
Improved Cube Handling in Races:
Insights with Isight

Axel Reichert (mail@axel-reichert.de)

2014-06-12

Abstract

You are an ambitious backgammon player? You like the Keith
count, but wish it were simpler? You like the Keith count, but think
it lacks accuracy? You like the Kleinman count or Trice’s Rule 62,
but have no idea how their accuracy compares with the Keith count?
You like the Keith count, but would prefer a method that gives win-
ning percentages and works even in match play? You like Bower’s
interpolation for the Thorp count, but like the Keith count better?
You like the concept of the EPC, but have no idea how to calculate it
for a complicated position? You have heard rumors about a “gold stan-
dard table”, but do not want to calculate square roots over the board
or distinguish between long and short races? You want a method for
cube handling in races that can be used for positions with wastage?
You want a method for cube handling in races that can be abused for
mutual two-checker bear-offs?

Then you should read this article.

1

Contents

Contents
1 Introduction 3

2 Adjusted Pip Counts 4
2.1 High Stacks (on Low Points) 4
2.2 Low Stacks (on High Points) 5
2.3 More Checkers Out . 7
2.4 Less Checkers Off . 8
2.5 Bonus or Penalty? . 9
2.6 Absolute or Relative? . 9

3 Decision Criteria 10
3.1 Point of Last Take . 10
3.2 Doubling Point . 10
3.3 Redoubling Point . 11
3.4 Long Race or Short Race? . 11

4 Multi-Objective Parameter Optimizations 11
4.1 Adjusted Pip Counts . 11
4.2 Decision Criteria . 12
4.3 Effort and Error . 13

5 Results 15
5.1 Adjusted Pip Counts . 15
5.2 Decision Criteria . 16
5.3 Effort and Error . 16
5.4 Comments on Cub-offs . 18

6 Alternative Approaches 19
6.1 EPC Approximations . 19
6.2 CPW Approximations . 21
6.3 Methods for Matches . 24

7 Discussion 27

8 Summary 28

A Appendix 29
A.1 Examples . 29
A.2 Combinations of Counts and Criteria 35
A.3 Long Race or Short Race? . 37

2

1 Introduction

1 Introduction
Good cube handling in backgammon endgames is an important skill for ambi-
tious players. Such situations come up frequently, but usually cannot be solved
analytically by means that can be used legally over the board. Consequently,
accurate heuristics that can be applied easily even when pressed for time (e. g.
at tournaments with clocks) are needed. These typically consist of two things,
an adjusted pip count and a decision criterion. An “adjusted pip count” does
a much better job than a “straight” pip count (and, in most cases, than your
gut feeling!) when judging your chances in a pure race (i. e., a race in which
all contact has been abandoned). A “decision criterion” will tell you when to
double, redouble, take, or pass.

If you are not familiar with backgammon theory for cube decisions, races,
and pip counts, I recommend reading three articles by Tom Keith, Wal-
ter Trice, and Joachim Matussek:

• http://www.bkgm.com/articles/CubeHandlingInRaces/

• http://www.bkgm.com/articles/EffectivePipCount/

• http://www.bkgm.com/articles/Matussek/BearoffGWC.pdf

While http://www.bkgm.com/ offers a wealth of information on various other
backgammon topics, particularly these three should prepare you to make the
most of the rest of this article.

After having a look into how adjusted pip counts and decision criteria
work in general, we will then proceed to a more formal framework that will
allow us to parametrize and optimize adjusted pip counts and the correspond-
ing decision criteria. The outcome will be a new method (or, more precisely,
several new methods) resulting in both less effort and fewer errors for your
cube handling in races compared to existing methods (Thorp, Keeler,
Ward, Keith, Matussek, Kleinman, Trice, Ballard etc.). Such a
claim demands verification, hence we will look at results obtained with the
new method and compare them to the existing ones for cube handling in races.
Furthermore we will look at approximations of the effective pip count (EPC) or
the cubeless probability of winning (CPW), which is a prerequisite of methods
for match play. A summary concludes this article and recapitulates my findings
for the impatient backgammon player who is always on the run, since the next
race is in line online. Finally, the appendices contain several examples detail-
ing the application of the new method and, for the readers not yet convinced
of its merits, some rather technical remarks and further comparisons.

3

2 Adjusted Pip Counts

2 Adjusted Pip Counts
Pip counts need to be adjusted because straight (unadjusted) pip counts do a
poor job when judging your racing chances. This is due to positional features
that are neglected by a straight pip count, but might hurt you during bear-off:

• High stacks

• Gaps

• Crossovers

• More checkers to bear off

We will then deal with the question whether these features need to be pun-
ished or their lack should be rewarded. Why, for example, not give a “bonus”
(by subtracting from the pip count) for an even distribution of checkers rather
than a “penalty” (by adding to the pip count) for stacks/gaps? A similar prob-
lem is whether these positional features should be treated in an “absolute”
fashion (punish/reward both players independently) or in a “relative” fashion
(punish/reward one player only, employing numerical differences).

2.1 High Stacks (on Low Points)
Most players realize intuitively that high stacks, especially on low points, are
not good during bear-off. Why is this so? In figure 1 on the following page
both White’s and Red’s pip counts are 5. If White rolls 6 and 5, his pip count
will decrease by only 2, hence 9 pips are “wasted”, a concept exploited by
Walter Trice in his EPC. The higher the stack and the lower the point,
the more overall wastage: Higher stacks mean more checkers to bear off with
wastage, lower points mean more wastage per checker. In contrast, one checker
borne off from the 5 point will at most waste a single pip. Wastage has a severe
effect on winning chances, in fact in this example Red should double (even
after White rolls a double) and White has an optional pass.

High stacks on low points hence call for a penalty to account for the
wastage. But how many checkers make for a “high” stack? And how many
points are “low”? Popular adjusted pip counts (Thorp, Keeler, Ward,
Keith) penalize stacks on points 1, 2, and 3 with up to 2 additional pips.
Some of these methods penalize only stacks higher than a particular “offset”,
e. g., Tom Keith recommends to “add 1 pip for each checker more than 3
on the 3 point”. Likewise, the Keeler method uses a stack penalty of 1 and
a stack penalty offset of 0 for point 1. We could even say that it uses a stack
penalty of 0 for point 2 (since it does not penalize stacks there).

4

2.2 Low Stacks (on High Points)

Figure 1: Wastage by high stacks on low points

In a general framework, adjusted pip counts use a “stack penalty” and a
“stack penalty offset” for each home board point.

2.2 Low Stacks (on High Points)
Having understood the basic concept of wastage, how does this apply to low
stacks? Why might a gap (the most extreme form of a low stack) call for
further adjustments of the pip count? This is because a gap usually leads to
more wastage later on in the race, since it often forces you to move check-
ers from higher points to lower points. In figure 2 on the next page, White
rolls 5 and 4 and is forced to play 6/2 6/1: This bears off no checkers,
but creates high stacks on low points, which lead to future wastage. Once
on the lower points, these checkers will be penalized by the adjusted pip

5

2.2 Low Stacks (on High Points)

(a) Low stacks on high points . . . (b) . . . give high stacks on low points

Figure 2: Future wastage by gaps

counts. Penalizing gaps earlier in the race will account for future wastage.
A second effect also warrants a penalty on gaps: Each time you roll a num-
ber corresponding to a gap, you will not be able to bear off a checker us-
ing this number. And sometimes you will not even be able to close a gap
or smooth your distribution. Hence, in contrast to Douglas Zare (see
http://www.bkgm.com/articles/Zare/EffectivePipCount/index.html) I
believe there is strong evidence that gaps should be penalized, since they are
potential ancestors of high stacks on low points (see above) or less checkers
off (see below).

So a straight pip count needs to be adjusted for gaps on high points. But by
how many pips? What makes for a “high” point? And what then constitutes
a gap? Does a position with no checker on point 5 have a gap there at all
if point 6 and higher points have already been vacated? The Keith method
answers in the positive, since it simply penalizes empty space on points 4,
5, or 6 with a “gap penalty” of 1. The method by Paul Lamford even
considers whether rolling the gap number allows for filling other gaps. In this
case, the penalty is reduced or not even applied at all. In contrast, the other
three well-known adjusted pip counts (Thorp, Keeler, and Ward) give a
bonus (more on this later) for occupied points.

In a general framework, adjusted pip counts use a “gap penalty” (using a
particular definition of “gap”) for each home board point.

6

2.3 More Checkers Out

Figure 3: More checkers out

2.3 More Checkers Out
Races in which not all checkers have already been borne in are typically quite
long regarding the pip count or have one player with a crunched home board
plus one or two stragglers. In the latter case, one player still has to bring in the
remaining checkers, while the other can already start to bear off. Adjusting
the pip count further for checkers not yet in the home board thus seems an
option. In figure 3, both White’s and Red’s pip counts are 70, but White’s
winning chances are about 66%, according to GNU Backgammon. Red needs
to move his last checker into his home board before he can start his bear-off,
while White starts immediately.

Thus a straight pip count needs to be adjusted. But by how many pips?
Of the four adjusted pip counts considered here, only the Ward method uses
such a penalty: It adds half a pip for every checker outside the home board.

7

2.4 Less Checkers Off

Figure 4: Less checkers off

One could also take into account how far the stragglers are behind. When
counting crossovers, a checker that has just entered from the bar warrants
more additional pips than a checker on your bar point.

In a general framework, adjusted pip counts use a “straggler penalty” or
“crossover penalty” for checkers still outside the home board.

2.4 Less Checkers Off
Clearly the number of checkers still to bear off matters. In figure 4, both
White’s and Red’s pip counts are 43, but White should double and Red should
pass, according to GNU Backgammon. Red needs to bear off 13 checkers, while
White has only 8 left.

So a straight pip count needs to be adjusted for additional checkers. But by
how many pips? Thorp, Keeler, and Ward all penalize more checkers to
bear off with 2 additional pips per checker.

In a general framework, adjusted pip counts use a “checker penalty” for
this.

8

2.5 Bonus or Penalty?

2.5 Bonus or Penalty?
So far, we have dealt only with penalties. How about the opposite concept,
attributing bonus pips (subtracting from the straight pip count) for well-
balanced positions without gaps or high stacks? There are two problems with
this approach. First, all positions have wastage, which means additional pips
you will have to roll on average to get your checkers off. You will never bear
off a checker from point 4 with less than 4 pips. Second, with bonus pips the
adjusted pip count might become zero or negative for very short races, which
will render some of the decision criteria (see section 3 on the following page)
rather dubious, e. g., how to add 10% to a pip count of −3?

Despite these theoretical reservations, the Thorp, Keeler, and Ward
methods all give a one pip bonus for additional occupied home board points.
This is the only case in which a positional feature is awarded a bonus by one
of the popular methods.

In a general framework, adjusted pip counts use a “point bonus” to account
for occupied points in the home board.

2.6 Absolute or Relative?
Adjusting pip counts needs mental resources and time (important for tourna-
ments played with clocks), so things should be kept simple. “Absolute” posi-
tional features need more effort than “relative” ones: It takes much more time
to add 2 pips for each checker the player has on the board (like the Thorp
method does) than to add 2 pips for each additional checker compared to the
opponent (like the Keeler method does).

In a general framework, adjusted pip counts use 5 binary variables (“rel-
ative flags”) that control whether positional features are evaluated in an ab-
solute or relative way, working independently on gaps, stragglers, crossovers,
checkers still to bear off, and occupied points.

Let me give you some examples to explain this idea: With a relative flag
for gaps, a gap on your point 4 would be penalized only if your opponent
had no gap on his point 4. The same is true for the other points for which a
gap penalty is applicable. With a relative flag for crossovers, you count the
crossovers still needed for bear-in. Assume you still need 1 crossover, while
your opponent needs 3. Hence his pip count will be increased by twice the
crossover penalty. This also goes for a straggler penalty (with relative flag)
used instead of a crossover penalty. And it would be perfectly fine for the
same adjusted pip count to penalize checkers still on the board in an absolute
fashion.

9

3 Decision Criteria

3 Decision Criteria
Once we have established an adjusted pip count, we need to review the various
features of decision criteria for cube action. The most important are:

• Point of last take

• Doubling point

• Redoubling point

Some decision criteria additionally distinguish between a long and a short
race.

3.1 Point of Last Take
Normally you need a reasonable lead in the adjusted pip count before offering
a double. But what is your maximum lead, so that your opponent still has a
take? Most methods add some fraction of the roller’s count and add or subtract
some more pips to determine this “point of last take”. How large should this
fraction be? And how many pips should further be added/subtracted? The
Keith method, for example, increases the roller’s pip count by 1/7 (of the
roller’s count) and subtracts 2 pips. The Thorp method uses only 1/10 of the
roller’s count, but adds 2 pips.

In a general framework, decision criteria use a “fraction” of the roller’s
pip count and some further “shift”. Since the numerator for this fraction is
typically 1, we will for convenience often refer only to the “denominator”
instead of the complete fraction.

3.2 Doubling Point
Now that we know the point of last take for the opponent, it is time to think
about the size of the doubling window. Most methods use a doubling win-
dow with a fixed size, e. g., Walter Trice’s Rule 62 advocates a “doubling
point” that is 3 pips shy of the point of last take. Edward Thorp’s crite-
rion, which is also used for the Keeler and Ward method, states that the
doubling point is 4 pips before the point of last take. The criterion for the
Keith method uses 2 pips.

In a general framework, decision criteria use a shift from the point of last
take to determine the “doubling point”.

10

3.3 Redoubling Point

3.3 Redoubling Point
For redoubles, the same procedure (i. e., applying a shift) is used by most
methods, e. g., Walter Trice’s Rule 62 uses a “redoubling point” 2 pips
shy of the point of last take, the Keith method uses 1 pip, and Edward
Thorp’s criterion uses 3 pips. Of course, the redoubling point is between the
doubling point and the point of last take.

In a general framework, decision criteria use a shift from the point of last
take to determine the “redoubling point”.

3.4 Long Race or Short Race?
Some decision criteria distinguish between a long and a short race. For ex-
ample, Bill Robertie mentions a modification of Edward Thorp’s de-
cision criterion: For a long race (i. e., the roller has more than 30 pips) the
pip count is increased by 1/10 (of the roller’s count). For shorter races this
fraction is 0. Then a shift of 2 pips is used to determine the point of last take.
Walter Trice’s criterion not only uses different denominators (10 for long
races, 7 for short races), but also different shift values (2 for long races, −5/7 for
short races). He also defines 62 as the breakpoint between short and long races
(hence the name Rule 62).

In a general framework, decision criteria use a “long race denominator”
and a “long race shift” as well as a “short race denominator” and a “short
race shift” for determining the point of last take. It is also necessary to define
the “long/short breakpoint”.

4 Multi-Objective Parameter Optimizations
In the previous sections we have seen that many adjusted pip counts and
decision criteria fit into the same framework and thus some general parameters
can be gathered and optimized so that cube handling errors are kept at a
minimum.

4.1 Adjusted Pip Counts
Table 1 on the next page summarizes the parameters for adjusted pip counts.
The parameter values are given for some existing methods and followed by the
lower and upper limits specified for the optimization. The flag for “true gaps”,
if set, means that a vacated point counts as a gap only if there is at least one
checker left on a higher point. Of course this definition could be changed to
something more complicated, e. g., along the lines of Paul Lamford.

11

4.2 Decision Criteria

Table 1: Parameters for adjusted pip counts

Parameter Existing methods Optimization limits

Thorp Keeler Ward Keith Lower Upper

Stack penalties

1 1 1 2 2 0 3
2 0 0 1 1 0 2
3 0 0 0 1 0 2
Stack penalty offsets

1 0 0 2 1 0 3
2 0 0 2 1 0 3
3 0 0 0 3 0 4
Gap penalties

4 0 0 0 1 0 1
5 0 0 0 1 0 1
6 0 0 0 1 0 1
Straggler penalty 0 0 0.5 0 0 1
Crossover penalty 0 0 0 0 0 1
Checker penalty 2 2 2 0 0 2
Point bonus 1 1 1 0 0 1
Relative flags

Gaps 0 0 0 0 0 1
Stragglers 0 0 0 0 0 1
Crossovers 0 0 0 0 0 1
Checkers 0 1 1 0 0 1
Points 0 1 1 0 0 1
True gaps 0 0 0 0 0 1

4.2 Decision Criteria
Table 2 on the following page summarizes the parameters for decision criteria.
The lower and upper values defined for the optimization are also included. I
did not distinguish between long and short races and thus needed only one
denominator and one shift along with the (re)doubling point. More on this
deliberate decision in appendix A.3 on page 37.

12

4.3 Effort and Error

Table 2: Parameters for decision criteria

Parameter Existing methods Optimization limits

Thorp Keith Trice Lower Upper

Long/short breakpoint 30 0 62 – –
Long race denominator 10 7 10 5 12
Long race shift 2 −2 2 −3 2
Short race denominator – – 7 – –
Short race shift 2 – −5/7 – –
Doubling point −4 −2 −3 −5 −2
Redoubling point −3 −1 −2 −4 −1

4.3 Effort and Error
We now have identified 19 integer parameters describing an adjusted pip count
and 4 integer parameters for a decision criterion. Each parameter has only
few possible values, since we have specified reasonable upper and lower limits:
The “relative flags”, e. g., can take only 2 different values (0 or 1), while the
“long race denominator” can take 8 different values, from 5 to 12. Using this
framework, there are a total of

4 · 3 · 3 · 4 · 4 · 5 · 2 · 2 · 2 · 2 · 2 · 3 · 2 · 2 · 2 · 2 · 2 · 2 · 2 = 35389440 (1)

possible combinations for an adjusted pip count and

8 · 6 · 4 · 4 = 768 (2)

possible combinations for a decision criterion. We can also combine each ad-
justed pip count with each decision criterion, so overall this amounts to a
“parameter space” of roughly 27 · 109 possible methods for cube handling in
races. This parameter space is too big to be evaluated completely, hence we
need a smart search technique, an optimization, to find within a finite time
the “best” combination of an adjusted pip count with a decision criterion.

We have not yet clarified the meaning of “best” in the previous paragraph:
Obviously, we want a method for cube handling that results in as few errors as
possible. But we also want a method that requires as little effort as possible. In
technical terms we are dealing with a multi-objective optimization problem.
This normally involves a trade-off: The more effort, the less errors. It does
not make sense to use a method that requires more effort and results in more
errors. Such methods are “dominated” by others: The methods that result in

13

4.3 Effort and Error

the fewest errors for a given effort (or, vice versa, the methods that require
the smallest effort for a given error) are on the “Pareto front”.

In order to quantify the error, we choose a set of parameters for both, the
adjusted pip count and the decision criterion, and test the resulting method
on Tom Keith’s database of endgame positions recorded on http://www.
fibs.com/. For every position, the method calculates an adjusted pip count
and recommends a cube action, which we compare with the correct cube action
from the database (as determined by roll-outs with GNU Backgammon). Any
wrong decisions (in terms of lost equity) can be summed up for all positions in
the database and thus quantify the error resulting from a particular method.

Quantifying the effort is more complicated: It is not immediately clear
whether an adjusted pip count using a stack penalty of 2 and a stack penalty
offset of 2 needs less effort than an adjusted pip count using a stack penalty
of 1 and a stack penalty offset of 1. What is clear, though, is that a gap penalty
of 0 instead of 1 makes a method simpler, because there are fewer arithmetic
operations. Likewise, lower checker penalties and lower stack penalties result
in less effort. On the other hand, higher stack penalty offsets are easier (be-
cause the penalties themselves have to be applied less often). Of course, using
“true gaps” means less effort, as does the use of all the “relative” flags. So for a
given method/set of parameters I ignored the signs of all the penalties/bonuses
applied by the adjusted pip count and summed up these absolute values for all
positions in the endgame database. This number of total adjustments (mea-
sured in pips) was used to quantify the effort required by a particular method.

Having quantified our two objectives, we can look at some of their prop-
erties that will have a big influence on choosing a successful parameter opti-
mization strategy. Technically speaking, our objective functions are nonlinear
(e. g., doubling a gap penalty does not necessarily double the error), multi-
modal (have many local minima) and discrete (all parameters are integers).
For these reasons, conventional gradient methods are likely to get stuck in
local minima. Which is why we will start with a much better suited genetic
algorithm that explores the parameter space to identify a promising region,
which we will then narrow down with a more exhaustive search, technically
a full factorial design of experiment (DOE), evaluating all of the remaining
possible parameter combinations to find the optimum cube handling method.
This ensures that a least in this region of the parameter space we do not over-
look the global minimum among all the local minima of the highly nonlinear
objective function.

14

5 Results

5 Results
The dull work of trying to choose a set of 19 parameters such that our two
objectives (effort and error) were minimized was done by Isight, a software
solution for process automation and design exploration by Dassault Systèmes,
the company I happen to work for. Essentially, what Tom Keith did for his
method by trial and error was now done systematically and passed over to a
software robot.

This exhaustive search found thousands of parameter combinations for ad-
justed pip counts and decision criteria that have a smaller error than Tom
Keith’s original method. This is not to diminish his outstanding work, in
fact I consider it a great achievement to find a needle (his method with an
error of 1262) in a haystack (the huge parameter space of 27 billion combi-
nations). That a more rigorous approach (using sieves and magnets, to stay
with the metaphor) would find more needles was to be expected. After about
5000 tested methods the optimization software found the following method
(from now on termed “Isight method”):

5.1 Adjusted Pip Counts
For each player, start with a straight pip count and:

• add 1 pip for each additional checker on the board compared to the
opponent;

• add 2 pips for each checker more than 2 on point 1;

• add 1 pip for each checker more than 2 on point 2;

• add 1 pip for each checker more than 3 on point 3;

• add 1 pip for each empty space on points 4, 5, or 6 (only if the other
player has a checker on his corresponding point);

• add 1 pip for each additional crossover compared to the opponent.

You can see that empty space is penalized in a relative sense, which means
that, e. g., your gap on point 4 is acceptable as long as your opponent also has
a gap there. The same holds for the other high points, 5 and 6. This method
does not penalize stragglers, but rather if one player has more crossovers than
the opponent. It also penalizes less checkers off in a relative sense. It does not
apply bonuses for positional features like occupied points. No sophisticated
definition of “gap” is used, just plain empty space, no matter what goes on
on higher points. Finally, we have the adjusted pip counts for both players.

15

5.2 Decision Criteria

5.2 Decision Criteria
Increase the count of the player on roll by 1/6.

• A player should double if his count exceeds the opponent’s count by at
most 6.

• A player should redouble if his count exceeds the opponent’s count by
at most 5.

• The opponent should take if the doubler’s count exceeds his count by at
least 2.

You will perhaps notice that this is very similar to the wording of the
Keith method. However, translating back to the terminology of section 3 on
page 10, the decision criterion uses a doubling point 4 pips shy of the point of
last take and a redoubling point 3 pips shy of the point of last take, hence the
(re)doubling windows have the same size as with the Thorp method, but
are shifted: The “long race denominator” is 6 and the “long race shift” is −2
(in contrast to Thorp’s 10 and +2).

5.3 Effort and Error
Table 3 compares existing methods with the method found by Isight during the
optimization. The Isight method has the smallest total error (1064), and, con-
sequently, the smallest average error per decision (0.00688 equity). Not shown
in the table, it also has the smallest probability of a wrong decision (7.1%).
So the Isight method performs best regarding our objective to minimize the
error.

Even though the long list of items in section 5.1 on the previous page might
suggest that the Isight method requires more effort than, say, the Keeler

Table 3: Effort and error

Method Effort (pips) Error (equity)

Total Per player Total Per decision

Thorp 2875000 27.9 3043 0.01969
Keeler 313000 3.0 2253 0.01458
Ward 330000 3.2 1838 0.01189
Keith 379000 3.7 1262 0.00816
Isight 273000 2.6 1064 0.00688

16

5.3 Effort and Error

Table 4: Optimized parameters for adjusted pip counts

Stack penalties
for point

Stack penalty offsets
for point

Gap penalties
for point

Total effort
(Pips)

Total error
(Equity)

1 2 3 1 2 3 4 5 6

2 1 1 2 2 3 1 1 1 273000 1064a
2 1 0 2 2 3 1 1 1 263000 1113
2 1 1 2 2 3 1 1 0 261000 1148
2 1 1 2 2 3 0 1 1 257000 1193
2 1 0 2 2 3 1 1 0 251000 1214
2 1 0 2 2 3 0 1 1 247000 1262

a. Isight method

or Keith methods (the first does not consider gaps, the second ignores less
checkers off, both do not take crossovers into account), the opposite is true:
Gap penalties applied only if the other player has a checker there and higher
stack penalty offsets save a lot of arithmetic operations. They help so much
in reducing the effort that in fact the Isight method results in less pip adjust-
ments per player than the older methods.

From a multi-objective optimization point of view, you can see that the
Thorp method (the first adjusted pip count in history?) requires more ef-
fort, but results in a higher error than the Keeler method, hence it is dom-
inated by the latter. Later improvements such as from Jeff Ward or Tom
Keith managed to bring down the error further, but at a cost: More effort
is needed. The Isight method, however, has a lower effort and error and thus
dominates all former methods.

During the optimization Isight literally found thousands of methods with
an error smaller than for the Keith method. Of these, six are located on the
Pareto front (remember, the trade-off between effort and error). They all
use the decision criterion from section 5.2 on the preceding page, a crossover
penalty of 1, and a checker penalty of 1. Neither straggler penalty, nor point
bonus, nor true gaps are used. Gaps, crossovers, and checkers are penalized
“relatively”, i. e., compared to the opponent. The other parameters are sum-
marized in table 4.

Comparing lines in this table that differ only by one parameter allows us
to quantify the trade-off between effort and error: Failing to penalize stacks
on point 3 costs about 60 points of equity (1113 versus 1064, 1214 versus
1148, and 1262 versus 1193). Not penalizing a gap on point 4 costs about
140 points (1193 versus 1064 and 1262 versus 1113), while not penalizing a

17

5.4 Comments on Cub-offs

Table 5: Race length and error

Race length
(up to pips)

Probability of error Average error (equity)

Isight Keith Isight Keith

10 0.1287 0.1362 0.03378 0.03780
20 0.1193 0.1175 0.01513 0.01561
30 0.0835 0.0845 0.00741 0.00824
40 0.0630 0.0694 0.00422 0.00623
50 0.0500 0.0588 0.00267 0.00409
60 0.0473 0.0602 0.00216 0.00363
70 0.0443 0.0597 0.00144 0.00258
80 0.0463 0.0510 0.00138 0.00164
90 0.0606 0.0583 0.00165 0.00155

100 0.0758 0.0737 0.00247 0.00217
110 0.0897 0.1004 0.00350 0.00309
120 0.0278 0.1250 0.00121 0.00555

gap on point 6 costs about 90 points (1148 versus 1064 and 1214 versus 1113).
The simplest method has a total error of 1262 like the Keith method, but
requires about 35% less effort. Compared with the Isight method, it still saves
about 10% effort, but has an error about 20% higher, a trade-off I do not
consider to be worthwhile.

Let us now have a closer look at the probability of a wrong cube decision
and the average error per cube decision with respect to the race length. All
adjusted pip counts, including the Isight method, are considerably more error-
prone for low pip counts (roughly for a race length below 30). For these,
analytical solutions are still best, but unfortunately can be very difficult and
time-consuming to calculate over the board. Having said this, table 5 shows
that the Isight method has a smaller average error (in terms of equity loss)
than the Keith method for a race length up to 80 pips. From 80 pips up to
110 pips the Keith method is slightly more accurate, whereas in very long
races (longer than 110 pips) again the Isight method has the edge. For races
up to 10 pips, from 21 pips to 80 pips, and above 110 pips the Isight method
is also less likely to result in a wrong cube decision.

5.4 Comments on Cub-offs
Even though for very short races both the likelyhood of a wrong cube decision
and the size of the error increase considerably, it is interesting to push the

18

6 Alternative Approaches

envelope of the Isight method and assess its performance for “cub-offs”, a term
coined by Danny Kleinman for bear-off positions with at most 2 checkers
left per player. Overall, there are 729 cub-offs, and for 405 cub-offs the player
on roll has a CPW between 50% and 95%.

The Isight method yields wrong decisions for about 12% of these, a sur-
prisingly small fraction. The average error per decision is only about 0.025.
Unless you feel very confident about memorizing the complete cub-off
tables available on the internet (http://www.bkgm.com/articles/Koca/
CuringYourShortBearoffBlues.html), or, alternatively, you feel very con-
fident about doing the math over the board (remember, without pencil and
paper, but including potential redoubles . . .), it thus might be a reasonable
approach to (ab)use the Isight method even for cub-offs.

6 Alternative Approaches
6.1 EPC Approximations
A concept quite different from adjusted pip counts is the EPC invented by
Walter Trice, see the article mentioned in section 1 on page 3. In brief,
the EPC of a particular position is the average number of rolls needed to
bear off completely, multiplied by the average number of pips in a roll (which
is 49/6).

The problem with this approach is to determine the average number of
rolls, since we do not have exact EPCs over the board. While this can easily
be estimated for “rolls” positions (ace-point stacks) or low-wastage “pips”
positions, in general, for the many positions that fall in between, the procedure
is far from easy: It requires remembering the wastage for quite a number of
cases, a good deal of experience and feeling for the position, or “synergy”
wizardry (see Douglas Zare’s article mentioned in section 2.2 on page 5,
which unfortunately does not explain the details). To me, the whole concept,
while very elegant from a mathematical point of view, seems rather fuzzy and
not very well suited for a strict algorithmical solution, which is much more to
my liking.

But perhaps could such an algorithm be found by assessing positional
features and adjusting for them (as explained in section 2 on page 4), so
that we do not end up with some arbitrary adjusted pip count, but rather
with something approximating the EPC as closely as possible? This approach
seems to be quite promising and was Joachim Matussek’s idea, see his
article mentioned in section 1 on page 3. He applies stack penalties (for all
points from 1 to 6), adds a further pip if any stack is at least 4 checkers high

19

6.1 EPC Approximations

and yet another pip if any stack is at least 6 checkers high. His method also
uses a “synergy” effect, i. e., it subtracts a bonus of 1 pip if point 1 is occupied,
but at least 3 other points are occupied as well. Another distinct feature is
the use of a constant penalty applied always, since every position will waste
at least a couple of pips. He uses 4.5 pips for this purpose. His method results
in an average EPC error per player per position of 1.70 pips (for each position
in the database EPCs for both players need to be approximated).

So I augmented Tom Keith’s database of endgame positions with EPCs
as determined by GNU Backgammon (which fortunately very well supports
such automation of tasks by scripting). Then I changed the objective function
of the optimization problem: Now I did not want to minimize the total cube
error, but rather the difference between the adjusted pip count and the correct
EPC from the database. I also had to introduce additional parameters for the
synergy effect and the constant penalty. Then I could start the optimization
process. This is what Isight found as an EPC approximation:

For each player, start with a straight pip count and:

• add 5 pips;

• add 2 pips for each checker on point 1;

• add 1 pip for each checker on point 2;

• add 1 pip for each checker on point 3;

• subtract 1 pip if point 1 and at least 3 other points are occupied.

This method allows to estimate the EPC for a player’s position with an av-
erage error of only 1.04 pips, hence it has a smaller total error and requires less
effort than Joachim Matussek’s method, which uses non-integer penalties
for all home board points.

While an approximation for EPCs is certainly nice to have, our main pur-
pose is cube handling in races, so we need to combine our “adjusted pip count”
(which by now has become an EPC approximation) with a suitable decision
criterion. Indeed there is one, somewhat hidden in Walter Trice’s book,
with a denominator of 49/6 and a shift of −3. Combining this criterion with
the EPC approximation from above, we get a total error of 1909 (now a total
cube error in terms of equity, not an EPC error in terms of pips), much worse
than the Keith method (1262) or the Isight method (1064) from section 5
on page 15. The question why this result is so bad needs some investigation.

The problem with EPCs, even if you have an algorithm to estimate them
over the board, is that Walter Trice’s decision criterion is very sensitive
to the EPCs, since it has a doubling point only 2 pips shy of the point of last

20

6.2 CPW Approximations

Table 6: EPC approximations with Walter Trice’s decision criterion

EPC approximation EPC error per player
(Pips)

Total cube error
(Equity)

Isight 1.04 1909
Matussek 1.70 1498
Exact ±1.5 0.75 1294
Exact ±1.3 0.65 1067
Exact ±1.0 0.50 800
Exact 0.00 401

take. You can imagine that being 2.5 pips off with your EPC approximation can
easily be the difference between “No double, take” and “Redouble, pass”. This
reasoning could be confirmed by hard numbers: I took the exact EPCs from
the database and added/subtracted uniformly distributed random numbers.
The resulting “EPC approximations” were combined with Walter Trice’s
decision criterion to determine the cube action. As usual, the total error was
summed up for all positions in the database, see table 6.

The results are disappointing: In order to get a total cube error compara-
ble to the Isight method (1064) from section 5 on page 15, we need an EPC
approximation with an average EPC error of about 0.65, which is probably
very difficult to achieve. However, assuming we had the exact EPCs, Walter
Trice’s criterion gives extremely accurate cube decisions. Unfortunately, it
does not work very well with the EPC approximations we have found so far.
This is an area with room for improvements in the future. Maybe someone
will find an approximation that is accurate enough to be useful in combination
with Walter Trice’s criterion, which is definitely not the culprit, see the
total error of only 401!

An interesting detail is that Joachim Matussek’s EPC approximation,
though worse than Isight’s, results in a smaller total cube error. We can
take this as a hint that adjusted pip count and decision criterion need
to be matched. However, Joachim Matussek does not employ Walter
Trice’s criterion (his article does not deal with cube decisions at all), but
rather uses the EPC approximation he found to approximate the CPW. This
leads us to yet another approach.

6.2 CPW Approximations
If we had them, exact CPWs in combination with percentages defining the
doubling/redoubling window would be even more accurate than using exact

21

6.2 CPW Approximations

EPCs with Walter Trice’s criterion. According to Tom Keith the total
cube error would be 201. He also mentions:

Unfortunately, it is usually harder to accurately estimate CPW
than it is to make correct cube plays, so this method is really
more of academic interest.

Fortunately, Tom Keith is not right. Let us see how CPW approximations
work.

The formula Joachim Matussek uses to approximate the cubeless
probability p of winning (in percent) for a race length l (roller’s pip count)
and a roller’s lead ∆l is

p(l, ∆l) = 50 % + v(l) ·
(

∆l + 49
12

)
, (3)

with v being the value of a pip (depending on the roller’s pip count). This
seems reasonable, since it has the nice property of giving 50% winning chances
if the roller is about 4 pips behind (half a roll, 49/12), a CPW we know for
some decades to be true for a wide range of race lengths. Both roller’s and
non-roller’s pip counts can be (and usually are) adjusted. Complications arise
when the value of a pip needs to be factored in. Joachim Matussek gives
a table for this, which needs further adjustments for positions in which at least
one player has a “rolls” position rather than a “pips” position.

Since I did not want to memorize and adjust values from a look-up table, I
thought about a table published by Tom Keith showing the CPW directly
as a function of race length and lead, http://www.bkgm.com/rgb/rgb.cgi?
view+1203. My idea was to approximate it using a linear regression

p(l, ∆l) = b− l

dC
+ v ·∆l , (4)

for which the base probability b, the CPW denominator dC, and the (now con-
stant) value of a pip v needed to be determined. Initial tests of fitting Tom
Keith’s table with this approach were promising. Using optimization soft-
ware, this was again an easy task. With the CPW error (absolute difference
between the correct CPW as rolled out by GNU Backgammon and its approx-
imation) as an objective to minimize, Isight found the following method:

p = 77− l

4 + 2∆l (5)

This CPW approximation has an average CPW error of 4.13 percentage points.
The next optimization problem for Isight was to find parameter values (i. e.,

22

6.2 CPW Approximations

Table 7: Parameters for CPW approximations

Parameter Lower Upper Unit

Base probability b 50 100 %
CPW denominator dCPW 2 10 –
Pip value v 1 6 %
Doubling point 65 75 %
Redoubling point 69 75 %
Point of last take 75 80 %

percentages) for the doubling point, the redoubling point, and the point of
last take such that combined with this CPW approximation the total error
for the cube decisions was minimized. The parameters and their limits for
these two runs are shown in table 7. The limits were chosen using a mixture
of guesswork, gut feeling, and old backgammon lore. They should reasonably
bracket the optimum. The first three parameters were used in the first run
for the optimization of the CPW approximation, the second three parameters
were used in the second run for the optimization of the (re)doubling window.
Isight found that with a doubling point of 68%, a redoubling point of 70%,
and a take point of 76% this CPW approximation gives a total cube error
of 1264. This is roughly on par with the Keith method (1262), but worse
than the Isight method (1064) from section 5 on page 15.

So I started another run, this time as a multi-objective optimization with
both the CPW error and the total cube error to be minimized simultaneously,
using all parameters from table 7. The parameter limits were unchanged.
Isight then found the following CPW approximation for a roller’s pip count l
and a roller’s lead ∆l:

p = 80− l

3 + 2∆l (6)

The (CPW-based) decision criterion uses the following percentages for the
doubling and redoubling window to determine the cube action:

• p < 68: No double, take.

• 68 ≤ p < 70: Double, take.

• 70 ≤ p ≤ 76: Redouble, take.

• p > 76: Redouble, pass.

23

6.3 Methods for Matches

Even though (due to the multi-objective nature of the optimization task)
this method compromises a little bit on average CPW error (4.26 percentage
points in comparison to the former 4.13), it does much better than equation (5)
when it comes to cube errors. It fact, it gives exactly the same total cube error
of 1064 as the Isight method. Even the decimal places (omitted here) matched
perfectly. Could this be pure chance? Probably not, and we will see why in
the next subsection.

6.3 Methods for Matches
The equations for CPW approximation somehow reminded me on Chuck
Bower’s interpolation for the Thorp method. In case you are not famil-
iar with it, this is how it works (his article can be found at http://www.
bkgm.com/rgb/rgb.cgi?view+158): If a Thorp count T of −2 corresponds
to the doubling point (say 70%) and a Thorp count T of +2 corresponds to
the point of last take (say 78%), then a simple linear interpolation will give a
CPW approximation:

p = 74 + 2T (7)

The Isight method combines the adjusted pip count from section 5.1 on
page 15 with the decision criterion from section 5.2 on page 16. This results in
a total cube error of 1064. If now the same adjusted pip count is combined with
the decision criterion from the previous subsection, we also get a total cube
error of 1064. Hence I had a strong suspicion that there might be a general
way to transform a decision criterion based on (re)doubling points and the
point of last take into a decision criterion based on percentages and the CPW.
A criterion of the latter form has the big advantage that it is suited for match
play, in which the doubling window might be far away from the usual values
for a money session. And indeed, there is a correspondence, and the reasoning
and the transformation are quite easy, since the decision criteria have all been
parametrized earlier.

You might recall from section 3.1 on page 10 that we get the point of last
take by increasing the roller’s pip count l by a fraction of the roller’s pip count
(determined by the “long race denominator” dl) and adding a further shift s.
If the non-roller, who has a pip count of l + ∆l, is precisely at this point of
last take with a CPW of pt (e. g. 78%), we can state the following implication:

l + l

dl
+ s = l + ∆l ⇒ p = pt (8)

Since the doubling point is sd pips shy of the point of last take (sd being
negative), which corresponds to a CPW of pd (e. g. 70%), we can state the

24

6.3 Methods for Matches

following implication:

l + l

dl
+ s + sd = l + ∆l ⇒ p = pd (9)

After subtracting l from both sides of these two equations, linear interpolation
gives the following “transformation formula”:

p = pd − (pt − pd)
∆l −

(
l

dl
+ s + sd

)
sd

(10)

Let us try this formula on the Isight decision criterion presented in sec-
tion 5.2 on page 16. The long race denominator dl is 6, the shift s is −2, and
the doubling point sd is −4. With a CPW of 70% at the doubling point and
78% at the point of last take this results in

p = 70− (78− 70)
∆l −

(
l
6 − 2− 4

)
−4 , (11)

which after a little bit of algebra turns out as

p = 82− l

3 + 2∆l . (12)

Does not this look familiar yet? Not quite? Well, using this CPW approxima-
tion with a doubling window from 70% to 78% will by design give exactly
the same cube decisions as using 80 instead of 82 for the constant term in the
CPW approximation with a doubling window from 68% to 76%. All numbers
will just be shifted by 2%. So finally we are back to

p = 80− l

3 + 2∆l (13)

with a (re)doubling window of 68%, 70%, and 76%. It will give us a total
cube error of 1064 as well, but has a slighly smaller CPW error than equa-
tion (12) and is thus better suited for match play, in which the percentages
used for the (re)doubling window will have to be adapted based on score. The
transformation formula thus has provided a very nice connection between the
Isight solutions for the two (originally unrelated) optimization problems.

If my framework for adjusted pip counts and decision criteria can be seen
as a generalization of Tom Keith’s work, my transformation formula can
be seen as a generalization of Chuck Bower’s work: Once you have an
adjusted pip count and a decision criterion using a point of last take and a
(re)doubling window of a particular size, you can easily convert it into an

25

6.3 Methods for Matches

Table 8: CPW approximations with transformation formula

Method b dC v Doubling
point

Redoubling
point

Point
of last
take

Total
error

Average
CPW
error

% – % % % % – %

Thorp1 74 5 2 70 72 78 4433 5.72
Keith2 86 7/4 4 70 74 78 1262 10.09
Matussek3 90 49/24 4 70 74 78 1498 10.86
Matussek4 90 2 4 70 74 78 1485 10.75
Isight 77 4 2 68 70 76 1264 4.13

80 3 2 68 70 76 1064 4.26
82 3 2 70 72 78 1064 4.54
85 2 3 68 71 79 1049 8.27

1. Without Bill Robertie’s enhancement (no long/short race distinction)
2. Necessary rounding down not represented by parameter values
3. Combined with Walter Trice’s decision criterion for EPC approximations
4. Like 3., but rounded value used for denominator

equivalent method working with percentages. Both methods will by design
result in exactly the same cube action in a money session, however the latter
will also work for match play. This is important for tournament players, in-
deed I was specifically asked by former German champion Tobias Hellwag
whether I had such a method in my theory bag. Now I do . . .

In case you are flirting with applying the transformation formula to your
favorite Thorp or Keith method (as an “exercise for the reader”), a word
of warning is in place: Of course this is possible, but for both methods it is not
as straight forward as for the Isight method. The Thorp method (at least
in its version enhanced by Bill Robertie) distinguishes between long and
short races, while the Keith method does some rounding down during the
definition of the point of last take. These features complicate things a little
bit, hence I cheated somewhat with the numbers in table 8: The results for the
CPW-based version of the Thorp method hold for his original formulation,
i. e., without distinction between long and short races. For the Keith method
you need to know where the rounding takes place:

p = 86− 4 ·
⌊

l

7

⌋
+ 4∆l (14)

By the way, as good as the Keith method is, for match play its average CPW

26

7 Discussion

error is surprisingly high. This perhaps explains Tom Keith’s quote from
the beginning of section 6.2 on page 21. The same holds for Joachim Ma-
tussek’s method, which was meant as an EPC approximation. As a detail,
this method slightly benefits both in terms of total cube error and CPW error,
if instead of the exact value for the CPW denominator (49/24, resulting from
the transformation formula) a rounded value of 2 is used.

The methods found by Isight all do a very good job regarding the total cube
error. The first three of them should be familiar from this and the previous
subsection. The last one was not yet mentioned, it gives the smallest total
cube error of all CPW-based methods found by Isight, however its CPW is
much higher than for the other ones, which is bad for match play.

7 Discussion
This paper presented a general, parametrized framework for adjusted pip
counts and decision criteria for cube handling in pure races without contact.
The positional features considered for adjusted pip counts were checkers al-
ready borne off, high stacks on low points, gaps on high points, and crossovers
needed before the bear-off starts. For decision criteria a distinction between
long and short races was considered, but turned out to be unnecessary, since
long races are rare. The point of last take was determined using a denominator
and a further shift. In turn, doubling and redoubling point were shifted from
the point of last take.

Having the framework in place, lower and upper limits for all the parame-
ters were specified. Two objectives were defined: The total cube error should
be minimized (tested against a database containing the correct cube actions
for around 50000 real life endgame positions), and the total effort should be
minimized (quantified using the total number of pips added/subtracted by
the adjustments). Several multi-objective optimizations were done using the
software solution Isight. First, an adjusted pip count and a decision crite-
rion were found. The resulting method for cube handling in races has both
a lower effort and error than existing methods. It can be reasonably used
even for cub-offs. It is crucial that the decision criterion be valid for positions
with wastage in order to match an adjusted pip count successfully. Second, a
method for approximating EPCs was found, with both a lower effort and EPC
error than existing methods. This method is not suitable for cube handling.
Third, a method for approximating CPW was found, with a decision criterion
that resulted in exactly the same cube action as the method found before.

Indeed, a connection between these two methods was found: The trans-
formation formula describing it can be used to convert any decision criterion

27

8 Summary

based on a point of last take and a (re)doubling window into an equivalent
method working with percentages. This allows for the use in match play, for
which the percentages will have to be adapted based on score.

8 Summary
• To approximate EPCs, start with a straight pip count for each player.

◦ Add 5 pips.
◦ Add 2 pips for each checker on point 1.
◦ Add 1 pip for each checker on point 2.
◦ Add 1 pip for each checker on point 3.
◦ Subtract 1 pip if point 1 and at least 3 other points are occupied.

• To decide on cube action, start with a straight pip count for each player.

◦ Add 1 pip for each additional checker on the board compared to
the opponent.
◦ Add 2 pips for each checker more than 2 on point 1.
◦ Add 1 pip for each checker more than 2 on point 2.
◦ Add 1 pip for each checker more than 3 on point 3.
◦ Add 1 pip for each empty space on points 4, 5, or 6 (only if the
other player has a checker on his corresponding point).
◦ Add 1 pip for each additional crossover compared to the opponent.
◦ With your adjusted pip count l and your lead ∆l (can be negative),

p = 80− l

3 + 2∆l

is your approximated CPW. The cube action for money is:
◦ p < 68: No double, take.
◦ 68 ≤ p < 70: Double, take.
◦ 70 ≤ p ≤ 76: Redouble, take.
◦ p > 76: Redouble, pass.
◦ Adapt (re)doubling window according to match equity calculations
in tournaments.

28

A Appendix

A Appendix
A.1 Examples
After so much generalization, parametrization, design space exploration,
multi-objective optimizations, equations, interpolation, transformations, and
approximations of various acronyms it is high time to apply the Isight method
to some examples. Except for one position (“pips” versus “rolls”), the follow-
ing examples have all been taken randomly from Tom Keith’s database of
endgame positions played on FIBS. We will apply the adjusted pip count and
the decision criterion based on the CPW approximation to all of them. In ad-
dition, the summary table below each figure will also give the values from the
EPC approximation. The outcome will be compared with the correct results
from GNU Backgammon.

The purpose of these examples is not the verification of the methods,
which has already been done by testing them on the full database, and the
results of this have been presented in the main part of this paper. Instead,
these examples should rather be seen as exercises in applying the methods
and as a way to resolve any ambiguities (hopefully few) still present in their
formulation.

In figure 5 on page 31 the straight pip count is 86 versus 90. Both players
have to bear off the same number of checkers, so no checker penalty is applied.
No player has more than 2 checkers on his point 1, more than 2 checkers on
his point 2, or more than 3 checkers on his point 3, so no penalties need
to be applied for stacks. No player has gaps on his points 4, 5, or 6, so no
penalties need to be applied for gaps. White has 4 checkers with 1 crossover
and 1 checker with 2 crossovers, in total 6 crossovers. Red has 5 checkers with
1 crossover each, in total 5 crossovers. Hence White gets 1 pip penalty. The
adjusted pip count is 87 versus 90, so the race length is 87 pips and the lead
is 3 pips. This results in a CPW for White of 80− 87/3 + 2 · 3 = 57 % < 68 %.
The cube action is thus “No double, take”. A rollout with GNU Backgammon
confirms the cube action, but gives a CPW of 65.6%.

In figure 6 on page 31 Red has borne off 2 checkers less than White,
so Red gets 2 pips penalty. Red also has 5 checkers on point 2, 3 more than
“allowed”, so Red gets another 3 pips penalty. White has 5 checkers on point 3,
2 more than the “allowed” 3, so White gets 2 pips penalty. White has a gap
on point 4, whereas Red does not, so White gets 1 pip penalty. On the other
hand, Red has a gap on point 6, whereas White does not, so Red gets one pip
penalty, too. Red has 1 additional crossover and so gets another 1 pip penalty.
The adjusted pip count is 53 versus 62. White’s lead is 9 pips. His CPW is

29

A.1 Examples

80 − 53/3 + 2 · 9 ≈ 79.7 % > 76 %. The cube action is thus “Redouble, pass”.
This is confirmed by GNU Backgammon, which reports a CPW of 80.2%.

In figure 7 on page 32 White gets 1 pip penalty due to 12 checkers off
against 13 for Red. There are no stacks, but gaps: 1 pip gap penalty for Red
on point 4, 1 pip gap penalty for White on point 5, no gap penalty on point 6.
No crossovers left. The adjusted pip counts become 10 versus 11, White’s lead
is 1 pip. His CPW is 80 − 10/3 + 2 · 1 ≈ 79.7 % > 76 %. The cube action is
thus “Redouble, pass”. GNU Backgammon confirms this and reports a CPW
of 84%.

In figure 8 on page 32, the Isight method is abused for a cub-off. White
gets an additional pip for its 2 checkers left against 1 checker for Red. No stack
penalties, but 1 pip gap penalty for Red on point 4 (since White has occupied
its point 4). No crossover penalties. The adjusted pip count is 7 versus 4.
The race length is 7, White’s lead is −3. His CPW is 80 − 7/3 + 2 · (−3) ≈
71.7 % ≥ 70 %. Since 71.7 % ≤ 76 %, the cube action is “Redouble, take”.
GNU Backgammon also reports “Redouble, take”, but a CPW of only 63.9%.

In figure 9 on page 33, only Red gets 1 pip penalty, since White has
borne off 1 more checker. No penalties for stacks, gaps, or crossovers. The
adjusted pip count becomes 52 versus 60. White’s lead is 8 pips. His CPW is
80− 52/3 + 2 · 8 ≈ 78.7 % > 76 %. The cube action becomes “Redouble, pass”,
confirmed by GNU Backgammon, which reports a CPW of 80.5%.

In figure 10 on page 33, an extreme “pips versus rolls” position, the straight
pip count (30 versus 15) is highly misleading. Red gets 4 pips penalty for his
fewer checkers borne off. Red gets 6 pips penalty for his 3 checkers “too many”
on point 1. Red also gets 3 pips penalty for his 3 checkers “too many” on
point 2. Finally, Red gets 3 pips penalty for his gaps on points 4, 5, and 6, all
of which White has occupied on his side of the board. The adjusted pip count
becomes 30 versus 31. White leads by 1 pip! His CPW is 80 − 30/3 + 2 · 1 =
72 % ≥ 68 %. The cube action is “Double, take”. GNU Backgammon confirms
the cube action and gives a CPW of 67.7%.

In figure 11 on page 34 White gets 2 pips penalty for his third checker
on point 1. He also gets 1 pip penalty for his third checker on point 2.
Red accordingly gets 4 pips penalty for his stack on point 2 (4 checkers
“too high”, 6 instead of 2). No penalties for crossovers or gaps (because
both players have vacated their points 4, 5, and 6, there are no “relative”
gaps). The adjusted pip count is 18 versus 18, White’s lead is 0. His CPW is
80 − 18/3 + 2 · 0 = 74 % > 68 %. The cube action becomes “Double, take”,
confirmed by GNU Backgammon, which reports a CPW of 74.7%.

Figure 12 on page 34 concludes this appendix with two example positions,
which can be used to test your understanding of the methods. For these, only
the final results are presented, but no complete summary tables. Good luck!

30

A.1 Examples

White Red

Straight 86 90
Penalties
Checkers 0 0
Stack on 1 0 0
Stack on 2 0 0
Stack on 3 0 0
Gap on 4 0 0
Gap on 5 0 0
Gap on 6 0 0
Crossovers 1 0
Adjusted 87 90
Prediction (Isight method)
CPW (%) 57.0 43.0
Cube action No double Take
EPC 95 97
Solution (GNU Backgammon)
CPW (%) 65.6 34.4
Cube action No double Take
EPC 95.5 98.3

Figure 5: Long race

White Red

Straight 50 55
Penalties
Checkers 0 2
Stack on 1 0 0
Stack on 2 0 3
Stack on 3 2 0
Gap on 4 1 0
Gap on 5 0 0
Gap on 6 0 1
Crossovers 0 1
Adjusted 53 62
Prediction (Isight method)
CPW (%) 79.7 20.3
Cube action Redouble Pass
EPC 63 68
Solution (GNU Backgammon)
CPW (%) 80.2 19.8
Cube action Redouble Pass
EPC 62.0 68.5

Figure 6: Medium-length race

31

A.1 Examples

White Red

Straight 8 10
Penalties
Checkers 1 0
Stack on 1 0 0
Stack on 2 0 0
Stack on 3 0 0
Gap on 4 0 1
Gap on 5 1 0
Gap on 6 0 0
Crossovers 0 0
Adjusted 10 11
Prediction (Isight method)
CPW (%) 79.7 20.3
Cube action Redouble Pass
EPC 16 15
Solution (GNU Backgammon)
CPW (%) 84.0 16.0
Cube action Redouble Pass
EPC 15.6 15.6

Figure 7: Short race

White Red

Straight 6 3
Penalties
Checkers 1 0
Stack on 1 0 0
Stack on 2 0 0
Stack on 3 0 0
Gap on 4 0 1
Gap on 5 0 0
Gap on 6 0 0
Crossovers 0 0
Adjusted 7 4
Prediction (Isight method)
CPW (%) 71.7 28.3
Cube action Redouble Take
EPC 12 9
Solution (GNU Backgammon)
CPW (%) 63.9 36.1
Cube action Redouble Take
EPC 11.1 8.2

Figure 8: Cub-off

32

A.1 Examples

White Red

Straight 52 59
Penalties
Checkers 0 1
Stack on 1 0 0
Stack on 2 0 0
Stack on 3 0 0
Gap on 4 0 0
Gap on 5 0 0
Gap on 6 0 0
Crossovers 0 0
Adjusted 52 60
Prediction (Isight method)
CPW (%) 78.7 21.3
Cube action Redouble Pass
EPC 62 69
Solution (GNU Backgammon)
CPW (%) 80.5 19.5
Cube action Redouble Pass
EPC 60.6 67.6

Figure 9: “Pips” position

White Red

Straight 30 15
Penalties
Checkers 0 4
Stack on 1 0 6
Stack on 2 0 3
Stack on 3 0 0
Gap on 4 0 1
Gap on 5 0 1
Gap on 6 0 1
Crossovers 0 0
Adjusted 30 31
Prediction (Isight method)
CPW (%) 72.0 28.0
Cube action Double Take
EPC 35 35
Solution (GNU Backgammon)
CPW (%) 67.7 32.3
Cube action Double Take
EPC 36.3 36.2

Figure 10: “Pips versus rolls” position

33

A.1 Examples

White Red

Straight 15 14
Penalties
Checkers 0 0
Stack on 1 2 0
Stack on 2 1 4
Stack on 3 0 0
Gap on 4 0 0
Gap on 5 0 0
Gap on 6 0 0
Crossovers 0 0
Adjusted 18 18
Prediction (Isight method)
CPW (%) 74.0 26.0
Cube action Double Take
EPC 31 29
Solution (GNU Backgammon)
CPW (%) 74.7 25.3
Cube action Double Take
EPC 29.9 30.0

Figure 11: “Rolls” position

White Red

Prediction (Isight method)
CPW (%) 67.7 32.3
Cube action No redouble Take
Solution (GNU Backgammon)
CPW (%) 69.0 31.0
Cube action No redouble Take

White Red

Prediction (Isight method)
CPW (%) 81.0 19.0
Cube action Double Pass
Solution (GNU Backgammon)
CPW (%) 83.5 16.5
Cube action Double Pass

Figure 12: Two quiz positions

34

A.2 Combinations of Counts and Criteria

A.2 Combinations of Counts and Criteria
The parametrization of adjusted pip counts and decision criteria all using the
same (or a very similar) framework allowed to test a lot of combinations.
During my hunt for an improved method for cube handling I implemented the
following adjusted pip counts for testing:

• Straight (not adjusted)

• Thorp

• Keeler

• Ward

• Keith

• Isight (adjusted pip count, EPC approximation, and CPW approxima-
tion)

• Matussek (EPC approximation and CPW approximation)

The decision criteria I implemented for testing were:

• Robertie

• Thorp (with Robertie’s enhancement)

• Kleinman metric

• Chabot

• Trice (based on point of last take, i. e., Rule 62, or based on EPCs,
using the “hidden” criterion given in his book)

• Nack-57

• Nack-58

• Keith (based on point of last take or based on CPW, using the per-
centages given in his article)

• Isight (based on point of last take or based on CPW)

35

A.2 Combinations of Counts and Criteria

Table 9: Combinations and error

Adjusted pip count

Decision criterion Straight Thorp Keeler Ward Keith Isight Matussek

Robertie 9376 4753 3422 2839 3943 2856
Thorp 7784 3438 2298 1838 2360 1709
Kleinman 8301 4026 2466 1928 3031 1865
Chabot 7819 2745 2118 1760 1518 1369
Trice (Rule 62) 7954 3527 2143 1702 2016 1424
Nack-57 7944 3503 2133 1684 1988 1415
Nack-58 7948 3558 2140 1687 2007 1417
Keith 7529 2861 1988 1835 1262 1233
Isight 7228 2749 1743 1438 1474 1064 1934a
Keith (CPW) 1113b 2199c
Trice (EPC) 1909d 1498e

a. Matussek’s CPW approximation, then Isight’s percentages
b. Isight’s CPW approximation, then Tom Keith’s percentages
c. Matussek’s CPW approximation, then Tom Keith’s percentages
d. Isight’s EPC approximation, then Walter Trice’s EPC-based criterion
e. Matussek’s EPC approximation, then Walter Trice’s EPC-based criterion

Having all these building blocks available, it was very easy to test, e. g., which
adjustments are best suited if you want to use the Kleinman metric as
your decision criterion. I also checked combinations with Walter Trice’s
Rule 62, Nack Ballard’s “Nack-57” and “Nack-58” (co-authored by Neil
Kazaross), and a fairly new method by Michelin Chabot. The total
cube error for various combinations is shown in table 9.

From the data, a couple of things are apparent: A straight pip count
is much worse than the Thorp method, which in turn is worse than the
Keeler method, which in turn is worse than the Ward method. This is
just an extension of the work Tom Keith did in his investigation. His own
adjusted pip count is typically worse than the Ward method, except when
combined with his own decision criterion (which is of course the thing to do) or
the very similar one by Michelin Chabot. The Ward method in turn is
worse than the Isight method, except when combined with Bill Robertie’s
decision criterion.

You can also see that neither the metric by Danny Kleinman, nor
Walter Trice’s Rule 62 in combination with Jeff Ward’s adjustments,
nor Nack Ballard’s methods, nor Michelin Chabot’s method come

36

A.3 Long Race or Short Race?

close to what Tom Keith had achieved already 10 years ago. The same
holds for the alternative approach of approximating EPCs and using an ap-
propriate decision criterion suited for them.

Almost all decision criteria benefit when they are combined with Isight’s
adjusted pip count. And almost all adjusted pip counts benefit when combined
with Isight’s decision criterion. The best choice (in terms of minimum total
error) is to combine Isight’s adjusted pip count with Isight’s decision criterion.
Since Isight optimized both things simultaneously, this is a strong rationale
for matching adjusted pip count and decision criterion.

It is also interesting to compare Walter Trice’s Rule 62 with Nack-
57/58 and the Chabot method: These decision criteria are all related to
the “gold standard table” (more on this in the next section), which is repro-
duced exactly by Nack-57/58, but only approximated by Rule 62. Michelin
Chabot in turn only approximates Rule 62 (by using a denominator of 8,
no shift for the point of last take, and omitting the long/short race distinc-
tion), so one would expect to see the highest total error for Chabot, followed
by Trice and Nack-57/58. However, for most of the adjusted pip counts,
Chabot fares best of these four decision criteria. Why?

A possible explanation is that the “gold standard table” is valid only for
low-wastage positions. However, like in the database of endgames played on
FIBS, positions frequently show considerable wastage. This of course calls for
adjusted pip counts, so the poor performance even of the “exact” Nack-57/58
is only to be expected. Getting the necessary adjustments right and matching
them with an adequate decision criterion is more important than trying to
squeeze out the last bit of equity using square roots and a distinction between
long and short races. We will deal with the latter topic next.

A.3 Long Race or Short Race?
Why should one care about the distinction between long and short races
(which introduces 3 additional parameters, i. e., the breakpoint between long
and short races, the “short race denominator”, and the “short race shift”)?
Well, Walter Trice came up with a table for money cube action in low-
wastage positions. He was an expert in racing theory, so his table has been
termed “gold standard table”. It contains the maximum pip deficit for the
non-roller (point of last take) depending on the roller’s pip count. The corre-
sponding graph is plotted in figure 13 on the next page.

Walter Trice’s “Rule 62” is able to generate this table (at least ap-
proximately) from a couple of simple arithmetical rules. Nack Ballard
devised a new arithmetical rule, “Nack-57”. Either this or its modification
“Nack-58” manage to reproduce the table exactly (the “winner” is not yet clear

37

A.3 Long Race or Short Race?

Figure 13: “Gold standard table” approximations with straight lines

Table 10: Optimized parameters for decision criteria

Denominator Shift Total error

3 −8 3034
4 −4 1778
5 −3 1145
6 −2 1064
7 −1 1144
8 −1 1329
9 0 1412

10 0 1597
11 1 1750
12 1 1860
13 1 2002
14 1 2161
15 1 2321
16 2 2403

38

A.3 Long Race or Short Race?

from the rollouts), see http://www.bgonline.org/forums/webbbs_config.
pl?noframes;read=59714. Both methods contain a distinction between long
and short races with the breakpoints being, you guessed it, 62 and 57, re-
spectively. You can see from figure 13 on the preceding page that methods
without this distinction give a poorer fit to the data, e. g., the old Thorp
method (without Bill Robertie’s enhancement) with its long race denom-
inator of 10 (which corresponds to a slope of 1/10) matches well only for the
higher pip counts, while Isight’s method with its long race denominator of 6
matches the lower pip counts well. Tom Keith’s method with its long race
denominator of 7 is a compromise and does a good job overall. This looked
like just another optimization problem well suited for an investigation with
Isight: For a simple decision criterion without distinction between long and
short races, table 10 on the previous page lists the best shift value for each
denominator along with the resulting total cube error. The lowest total error
of 1064 is achieved with a denominator of 6 and a shift of −2, corresponding
to the Isight method already presented in section 5.2 on page 16.

But if the Isight method is a rather poor fit of the “gold standard table”
for the higher pip counts, three questions arise:

1. Why does it perform so well in comparison with other methods?

2. Why does it perform better than even the exact representation of the
“gold standard table” by Nack-57/58?

3. Could it be improved even further by reintroducing the distinction be-
tween long and short races?

First, it performs so well because most of the endgames are rather short,
see the distribution of the race length for Tom Keith’s database in figure 14
on the next page: About 50% of the races are shorter than 40 pips, 90% are
shorter than 70 pips, and 95% are shorter than 75 pips. So fitting the straight
line approximating the “gold standard table” to the shorter races pays in terms
of increased accuracy. It is a number’s game, so better adapt your heuristics
to situations occuring frequently than to rather rare cases.

Second, Isight’s decision criterion works better than Nack-57/58 for two
reasons: The “gold standard table”, as already mentioned, refers to low-
wastage positions. If we define a low-wastage position as a position that
does not require any adjustments by the Isight method, then Tom Keith’s
database of around 50000 endgame positions contains only about 3000 of those
(around 6%). A “gold standard table” that cannot be reasonably applied to
positions with wastage loses a lot of its value. The other reason is that decision
criterion and adjusted pip count need to be matched: Imagine two different

39

A.3 Long Race or Short Race?

Figure 14: Race length and positions

methods for adjusting pip counts, one adding 100 pips per checker still on the
board, while the other works with a straight pip count, decreased further by
applying a bonus for a smooth position. It is obvious that these two methods
must be paired with quite different decision criteria in order to give accu-
rate cube decisions. Isight (and probably Tom Keith, too) optimized both
adjusted pip count and decision criterion simultaneously.

Third: Yes, but only slightly. With 50 pips as the breakpoint, 5 as the short
race denominator, −3 as the short race shift, 10 as the long race denominator,
and 2 as the long race shift, you will get a total error of 1041, in comparison
with the original 1064, at the cost of 3 additional parameters (and numbers
to memorize). Applying the transformation formula then gives

p =
{

84− 2
5 l + 2∆l, l ≤ 50

74− 1
5 l + 2∆l, l ≥ 50

(15)

as the corresponding CPW-based decision criterion with a (re)doubling win-
dow of 70%, 72%, and 78%, to be adapted in match play. To me, this method
is not worth the effort, so it is mentioned just for reference. You decide.

40

