
TDLeaf(
�

): Combining Temporal Difference Learning with Game-Tree
Search.

JonathanBaxter Andrew Tridgell & Lex Weaver
Departmentof SystemsEngineering Departmentof ComputerScience

AustralianNationalUniversity AustralianNationalUniversity
Canberra0200,Australia Canberra0200,Australia�
Jon.Baxter,Andrew.Tridgell,Lex.Weaver � @anu.edu.au

ABSTRACT
In this paperwe presentTDLeaf(�), a variationon the TD(�) algorithmthat enablesit to be used

in conjunctionwith minimax search. We presentsomeexperimentsin both chessandbackgammon
whichdemonstrateits utility andprovidecomparisonswith TD(�) andanotherlessradicalvariant,TD-
directed(�). In particular, our chessprogram,“KnightCap,” usedTDLeaf(�) to learn its evaluation
function while playing on the FreeInternetChessServer (FICS,fics.onenet.net). It improved
from a 1650ratingto a 2100ratingin just 308games.We discusssomeof thereasonsfor this success
andtherelationshipbetweenourresultsandTesauro’s resultsin backgammon.

1. Introduction

TD(�), developedby Sutton [6], has its roots in the
learningalgorithmof Samuel’scheckersprogram[4]. It
is anelegantalgorithmfor approximatingtheexpected
long term futurecostof a stochasticdynamicalsystem
as a function of the currentstate. The mappingfrom
statesto futurecostis implementedby a parameterised
function approximatorsuchasa neuralnetwork. The
parametersareupdatedonlineaftereachstatetransition,
or in batchupdatesafter several statetransitions.The
goalof thealgorithmis to improvethecostestimatesas
thenumberof observedstatetransitionsandassociated
costsincreases.

Tesauro’s TD-Gammonis perhapsthe mostremark-
ablesuccessof TD(�). It is a neuralnetworkbackgam-
monplayerthathasprovenitself to becompetitivewith
thebesthumanbackgammonplayers[8].

Many authors have discussedthe peculiarities of
backgammonthatmakeit particularlysuitablefor Tem-
poralDif ferencelearningwith self-play[7, 5, 3]. Princi-
ple amongthesearespeedof play: TD-Gammonlearnt
from severalhundredthousandgamesof self-play, rep-
resentationsmoothness: the evaluationof a backgam-
mon position is a reasonablysmoothfunction of the
position(viewed,say, asavectorof piececounts),mak-
ing it easierto find a goodneuralnetworkapproxima-
tion, andstochasticity: backgammonis a randomgame
which forcesat leasta minimal amountof exploration
of searchspace.

As TD-Gammonin its original form only searched
one-ply ahead,we feel this list should be appended
with: shallow search is good enough against hu-
mans. There are two possiblereasonsfor this; ei-
ther one doesnot gain a lot by searchingdeeperin

backgammon(questionablegiven that recentversions
of TD-Gammonsearchto three-ply for a significant
performanceimprovement),or humansareincapableof
searchingdeeplyandso TD-Gammonis only compet-
ing in apool of shallow searchers.

In contrast,findingarepresentationfor chess,othello
or Go which allows a small neural network to order
moves at one-ply with nearhumanperformanceis a
far moredifficult task[9, 11, 5]. For thesegames,re-
liable tacticalevaluationis difficult to achieve without
deepsearch. This requiresan exponentialincreasein
the numberof positionsevaluatedas the searchdepth
increases.Consequently, the computationalcostof the
evaluationfunctionhasto below andhence,mostchess
andothelloprogramsuselinearfunctions.

In thenext sectionwe look at reinforcementlearning
(thebroadcategory into whichTD(�) falls), andthenin
subsequentsectionswelookatTD(�) in somedetailand
introducetwo variationson the theme:TD-directed(�)
andTDLeaf(�). Thefirst usesminimax searchto gen-
eratebettertraining data,and the second,TDLeaf(�),
is usedto learnan evaluationfunction for usein deep
minimaxsearch.

2. Reinforcement Learning

Thepopularlyknownandbestunderstoodlearningtech-
niquesfall into the category of supervisedlearning.
This category is distinguishedby the fact that for each
input upon which the systemis trained,the “correct”
output is known. This allows us to measurethe error
anduseit to train thesystem.

For example,if our systemmapsinput ��� to output�	�� , then, with
� � as the “correct” output,we can use
 �	���� � ���� asa measureof the error correspondingto

��� . Summingthis valueacrossa setof trainingexam-
plesyieldsanerrormeasureof theform � �
 � �� � � ��� � ,
which canbeusedby trainingtechniquessuchasback
propagation.

Reinforcementlearningdifferssubstantiallyfrom su-
pervisedlearning in that the “correct” output is not
known. Hence, there is no direct measureof error,
insteada scalarreward is given for the responsesto a
seriesof inputs.

Consideranagentreactingto its environment(agen-
eralisationof thetwo-playergamescenario).Let � de-
note the set of all possibleenvironmentstates. Time
proceedswith the agentperformingactionsat discrete
time steps������������� � � . At time � the agentfinds the
environmentin state!#"%$&� , andhasavailablea setof
actions ')(+* . The agentchoosesan action ,-".$/'%(0* ,
which takestheenvironmentto state !�"2143 with proba-
bility 5
 !#"6�7!#"1438��,-"�� . After a determinedseriesof ac-
tionsin theenvironment,perhapswhena goalhasbeen
achieved or hasbecomeimpossible,the scalarreward,9
 !#:;� where< is thenumberof actionsin theseries,is
awardedto theagent.Theserewardsareoftendiscrete,
eg: “1” for success,“-1” for failure,and“0” otherwise.

For easeof notationwe will assumeall seriesof ac-
tionshave a fixedlengthof < (this is not essential).If
we assumethat theagentchoosesits actionsaccording
to somefunction ,
 !=� of the currentstate ! (so that,
 !>�?$@'%(), theexpectedrewardfrom eachstate!A$B�
is givenby CED
 !=�GFH�JI (0KML (9
 ! : �6� (1)

wherethe expectationis with respectto the transition
probabilities5
 !#"7��!�"21438�7,
 !�"N��� .

Oncewe have
C D
O � , we canensurethatactionsare

chosenoptimally in any stateby using the following
equationto minimise the expectedreward for the en-
vironmentie: theotherplayerin thegame.

, D
 !>�GF � argminP�Q0RTS CED
 ! � P �7U)�6� (2)

For very largestatespaces� it is not possiblestore
the value of

C D
 !>� for every !V$W� , so insteadwe
mighttry toapproximate

C D
usingaparameterisedfunc-

tion class XC FT�JY[Z�\@]^Z , for examplelinear func-
tion, splines,neuralnetworks,etc. XC
`_ �7U)� is assumed
to be a differentiablefunction of its parametersUa�
 U)3��8���8����U \ � . The aim is to find U so that XC
 !4��U%� is
“close to”

C D
2O � , at leastin so far as it generatesthe
correctorderingof moves.

This approachto learningis quitedifferentfrom that
of supervisedlearningwheretheaim is to minimisean
explicit errormeasurementfor eachdatapoint.

Another significant difference between the two
paradigmsis the natureof the data usedin training.
With supervisedlearningit is fixed, whilst with rein-
forcementlearningthestateswhich occurduringtrain-
ing aredependentupontheagent’schoiceof action,and

thuson the training algorithmwhich is modifying the
agent.Thisdependency complicatesthetaskof proving
convergencefor TD

 �>� in thegeneralcase[2].

3. The TD(b) algorithm

TemporalDif ferencelearningor TD

 �=� , is perhapsthe

bestknown of thereinforcementlearningalgorithms.It
provides a way of using the scalarrewardssuchthat
existing supervisedtraining techniquescanbe usedto
tunethefunctionapproximator. Tesauro’sTD-Gammon
for example,usesbackpropagationto trainaneuralnet-
work functionapproximator, with TD

 �=� managingthis
processandcalculatingthenecessaryerrorvalues.

Hereweconsiderhow TD

 �>� would beusedto train

an agentplaying a two-playergame,suchaschessor
backgammon.

Suppose!T3��8���8����! :)c 3��7! : is a sequenceof statesin
onegame. For a givenparametervector U , definethe
temporal differenceassociatedwith thetransition !#"d]!�"143 by e "fFH� XC
 !#"1438��U%� � XC
 !�"6��U%�g� (3)

Notethat

e " measuresthedifferencebetweenthereward
predictedby XC
`_ �7U)� at time �dhi� , andtherewardpre-
dictedby XC
`_ ��U%� at time � . ThetrueevaluationfunctionC D

hasthepropertyI (+* jlkNL (+*Tm C D
 ! "143 � � C D
 ! " �2nE�po��
soif XC
�_ ��U%� is a goodapproximationto

C D
, I (* jqk L (* e "

shouldbe closeto zero. For easeof notationwe will
assumethat XC
 !�:��7U)�d� 9
 !#:;� always,sothatthefinal
temporaldifferencesatisfiese :)c 3r�sXC
 ! : ��U%� � XC
 ! :)c 38��U%�M� 9
 ! : � � XC
 ! :%c 3+��U%�g�
That is,

e :)c 3 is the differencebetweenthe true out-
comeof thegameandthepredictionat thepenultimate
move.

At theendof thegame,theTD(�) algorithmupdates
theparametervector U accordingto theformula

UJFH�JUth&u :%c 3v "w43%x XC
 !#"6�7U)� yz :%c 3v{ w>" � { c " e "}|~ (4)

where x XC
`_ ��U%� is thevectorof partialderivativesof XC
with respectto its parameters.The positive parameteru controlsthelearningrateandwouldtypically be“an-
nealed”towardszeroduringthecourseof a long series
of games.Theparameter�t$ m o�����n controlstheextent
to which temporaldifferencespropagatebackwardsin
time. To seethis,compareequation(4) for ���Jo :UJF ��Uth�u :)c 3v "w43 x XC
 !#"7��U%� e "

��Uth�u :)c 3v "w43 x XC
 !#"7��U%���#XC
 !#"1430�7U)� � XC
 !#"7��U%���
(5)

and ����� :
UiFH�pUth&u :%c 3v "2w43 x XC
 !�"��7U)� � 9
 ! : � � XC
 !#"6�7U)� � �

(6)

Considereachterm contributing to the sumsin equa-
tions (5) and (6). For �i��o the parametervector is
beingadjustedin sucha way as to move XC
 !#"��7U)� —
the predictedreward at time � — closerto XC
 !#"143+��U%�
— thepredictedrewardattime ��h[� . In contrast,TD(1)
adjuststhe parametervector in suchaway asto move
thepredictedrewardat timestep� closerto thefinal re-
wardat timestep < . Valuesof � betweenzeroandone
interpolatebetweenthesetwo behaviours.Notethat(6)
is equivalentto gradientdescenton the error functionI
 U%��FH� � :%c 3"w43 � 9
 ! : � � XC
 !#"6�7U)�N� � .

Tesauro[7, 8] andthosewhohavereplicatedhiswork
with backgammon,reportthattheresultsareinsensitive
to thevalueof � andcommonlyuseavaluearound0.7.
Recentwork by BealeandSmith[1] however, suggests
that in the domainof chessthereis greatersensitivity
to the value of � , with it perhapsbeing profitableto
dynamicallytune � .

Successiveparameterupdatesaccordingto theTD(�)
algorithmshould,over time, lead to improved predic-
tions of the expectedreward XC
�_ ��U%� . Provided the ac-
tions ,
 ! " � areindependentof theparametervector U ,
it canbeshown that for linear XC
`_ �7U)� , theTD(�) algo-
rithmconvergestoanear-optimalparametervector[10].
Unfortunately, thereis no suchguaranteeif XC
`_ �7U)� is
non-linear[10], or if ,
 !#"�� dependson U [2].

4. Two New Variants

For argument’s sake,assumeany action , takenin state! leadsto predeterminedstatewhich we will denote
by ! � P . Onceanapproximation XC
�_ �7U)� to

C D
hasbeen

found, we can use it to chooseactionsin state ! by
picking the action ,�$�'%(whosesuccessorstate ! � P
minimizestheopponent’sexpectedreward1:X,
 !>�GF � argminP�Q0R S	XC
 ! � P �7U)�6� (7)

This wasthe strategy usedin TD-Gammon. Unfortu-
nately, for gameslike othelloandchessit is difficult to
accuratelyevaluateapositionby lookingonly onemove
or ply ahead.Most programsfor thesegamesemploy
someform of minimaxsearch.In minimaxsearch,one
builds a treefrom position ! by examiningall possible
movesfor thecomputerin thatposition,thenall possi-
blemovesfor theopponent,andthenall possiblemoves
for thecomputerandsoonto somepredetermineddepthe
. The leaf nodesof the treearethenevaluatedusing

a heuristicevaluation function (suchas XC
�_ ��U%�), and

1If successorstatesare only determinedstochasticallyby the
choiceof � , we would choosethe action minimizing the expected
rewardoverthechoiceof successorstates.

theresultingscoresarepropagatedbackup the treeby
choosingateachstagethemove which leadsto thebest
position for the playeron the move. Seefigure 1 for
anexamplegametreeandits minimaxevaluation.With
referenceto thefigure,notethattheevaluationassigned
to therootnodeis theevaluationof theleafnodeof the
principal variation; the sequenceof movestakenfrom
therootto theleafif eachsidechoosesthebestavailable
move.

Our TD-directed(�) variantutilisesminimax search
by allowing play to beguidedby minimax,but still de-
fines the temporaldifferencesto be the differencesin
theevaluationsof successive boardpositionsoccurring
duringthegame,asperequation(3).

Let XCq�
 !4�7U)� denotetheevaluationobtainedfor state! by applying XC
`_ �7U)� to the leaf nodesof a depth

e
minimaxsearchfrom ! . Our aim is to find a parameter
vector U suchthat XC��
�_ ��U%� is a goodapproximationto
theexpectedreward

C D
. Oneway to achieve this is to

applytheTD(�) algorithmto XC��
 !4�7U)� . Thatis, for each
sequenceof positions !T30�8��������! : in a gamewe define
thetemporaldifferencese "GFH� XC��
 !#"143+��U%� � XC��
 !#"6�7U)� (8)

asper equation(3), and thenthe TD(�) algorithm(4)
for updatingtheparametervector U becomes

UJFH�pUth�u :)c 3v "w43 x XC �
 ! " ��U%� yz :)c 3v{ w>" � { c " e " |~ � (9)

One problem with equation(9) is that for

e�� � ,XC �
 !E��U%� is not a necessarilya differentiablefunction
of U for all valuesof U , even if XC
`_ �7U)� is everywhere
differentiable. This is becausefor somevaluesof U
therewill be “ties” in the minimax search,i.e. there
will be more thanonebestmove available in someof
thepositionsalongtheprincipalvariation,whichmeans
thattheprincipalvariationwill notbeunique.Thus,the
evaluationassignedto the root node, XCq�
 !4�7U)� , will be
theevaluationof any oneof a numberof leafnodes.

Fortunately, undersomemild technicalassumptions
on the behaviour of XC
 !4�7U)� , it canbe shown that for
all states ! and for “almost all” U�$�Z�\ , XC��
 !4�7U)�
is a differentiablefunction of U . Note that XC��
 !4�7U)�
is also a continuousfunction of U whenever XC
 !4�7U)�
is a continuousfunction of U . This implies that even
for the“bad” pairs

 !E��U%� , x XC��
 !4�7U)� is only undefined
becauseit is multi-valued.Thuswe canstill arbitrarily
chooseaparticularvaluefor x XC��
 !4�7U)� if U happensto
landononeof thebadpoints.

Basedon theseobservationswe modifiedthe TD(�)
algorithmto takeaccountof minimaxsearch:insteadof
workingwith theroot positions!T30���8�����7! : , theTD(�)
algorithmis appliedto theleaf positionsfoundby min-
imax searchfrom theroot positions.We call this algo-
rithm TDLeaf(�).

H
3

I
-9

D

J
-5

K
-6

E
3 -5

B

L
4*

M
2

F

N
-9

O
5

G
4 5

C
-5 4

4
A

Fig.1: Full breadth,3-ply searchtreeillustratingtheminimaxrulefor propagatingvalues.Eachof theleafnodes(H–O) is givenascoreby the
evaluationfunction, ��#�2�H���d�

. Thesescoresarethenpropagatedbackup the treeby assigningto eachopponent’s internalnodethe minimum
of its children’svalues,andto eachof our internalnodesthemaximumof its children’svalues.Theprinciplevariationis thenthesequenceof
bestmovesfor eithersidestartingfrom therootnode,andthis is illustratedby a dashedline in thefigure.Notethatthescoreat therootnode
A is the evaluationof the leaf node(L) of the principalvariation. As thereareno ties betweenanysiblings,the derivative of A’s scorewith
respectto theparameters

�
is just ����#���4��M�

.

5. Experiments with Chess

In thissectionwedescribeseveralexperimentsin which
the TDLeaf(�) and TD-directed(�) algorithms were
usedto train theweightsof a linearevaluationfunction
for ourchessprogram,calledKnightCap.

For our mainexperimentwe took KnightCap’seval-
uationfunction andsetall but the materialparameters
to zero.Thematerialparameterswereinitialisedto the
standard“computer”values2. With theseparameterset-
tingsKnightCapwasstartedon theFreeInternetChess
server (FICS,fics.onenet.net). To establishits
rating, 25 gameswere played without modifying the
evaluationfunction,afterwhich it hada blitz (fasttime
control) rating of �����-o;�i�-o 3. We thenturnedon the
TDLeaf(�) learningalgorithm, with �i��o��H� and the
learning rate u�� �-� o . The value of � was chosen
arbitrarily, while u wassethigh enoughto ensurerapid
modificationof theparameters.

After only 308games,KnightCap’sratingclimbedto���-�8o)�¡�-o . This ratingputsKnightCapat the level of
USMaster.

We repeatedthe experimentusing TD-directed(�),
andobserved a 200 point rating rise over 300 games.
A significantimprovement,but slower thanTDLeaf(�).

Therearea numberof reasonsfor KnightCap’s re-
markablerateof improvement.

1. KnightCapstartedoutwith intelligentmaterialpa-
rameters.This put it closein parameterspaceto
many far superiorparametersettings.

2. Most playerson FICS prefer to play opponents
of similar strength,andsoKnightCap’sopponents
improvedasit did. Henceit receivedbothpositive
andnegative feedbackfrom its games.

3. KnightCapwasnot learningby self-play.

21 for a pawn,4 for a knight, 4 for a bishop,6 for a rook and12
for aqueen.

3After someexperimentation,we have estimatedthestandardde-
viation of FICSratingsto be50 ratingspoints.

To investigate the importance of some of these
reasons,weconductedseveralmoreexperiments.

Goodinitial conditions.
A secondexperimentwasrunin whichKnightCap’sco-
efficientswereall initialisedto thevalueof a pawn.

Playing with this initial weight setting KnightCap
hada blitz ratingof �����-o��¡�-o . After morethan1000
gameson FICS KnightCap’s rating has improved to
about ���0¢�o��£��o , a 280 point gain. This is a much
slower improvementthanthe original experiment,and
makesit clearthatstartingneara goodsetof weightsis
importantfor fastconvergence.

Self-Play
Learningby self-playwasextremelyeffective for TD-
Gammon,but asignificantreasonfor this is thestochas-
ticity of backgammon.However, chessis a determin-
istic gameand self-play by a deterministicalgorithm
tendsto resultin a largenumberof substantiallysimilar
games.This is not a problemif thegamesseenin self-
play are“representative” of the gamesplayedin prac-
tice, however KnightCap’s self-play gameswith only
non-zeromaterialweightsarevery differentto thekind
of gameshumansof thesamelevel wouldplay.

To demonstratethatlearningby self-playfor Knight-
Cap is not as effective as learningagainstreal oppo-
nents,we ran anotherexperimentin which all but the
materialparameterswere initialised to zeroagain,but
thistimeKnightCaplearntby playingagainstitself. Af-
ter 600 games(twice asmany as in the original FICS
experiment),weplayedtheresultingversionagainstthe
goodversionthat learnton FICS,in a 100gamematch
with theweightvaluesfixed. TheFICStrainedversion
won89pointsto theself-playversion’s11.

6. Backgammon Experiment

For our backgammonexperimentwe werefortunateto
have Mark Land (Universityof California,SanDiego)

provideuswith thesourcecodefor his LGammonpro-
gram which hasbeenimplementedalong the lines of
Tesauro’s TD-Gammon[7,8].

Along with the codefor LGammon,Land alsopro-
vided a set of weights for the neural network. The
weightswereusedby LGammonwhenplaying on the
First Internet BackgammonServer (FIBS, fibs.com),
whereLGammonachieveda ratingwhich rangedfrom
1600to 1680,significantlyabovethemeanratingacross
all playersof about1500.For convenience,we refer to
theweightsastheFIBSweights.

Using LGammonand the FIBS weights to directly
comparesearchingto two-ply againstsearchingto one-
ply, weobservedthattwo-ply is strongerby 0.25points-
per-game,asignificantdifferencein backgammon.Fur-
theranalysisshowedthatin 24%of positions,themove
recommendedby a two-ply searchdiffered from that
recommendedby a one-plysearch.

Subsequently, we decidedto investigatehow well
TD-directed(�) and TDLeaf(�), both of which can
searchmore deeply, might perform. Our experiment
soughtto determinewhethereitherTD-directed(�) or
TDLeaf(�) could find better weights than standard
TD(�).

To test this, we suitablymodified the algorithmsto
accountfor the stochasticityinherentin the game,and
took two copiesof theFIBSweights— theendproduct
of a standardTD(�) trainingrunof 270,000games.We
trainedonecopyusingTD-directed(�) andtheotherus-
ing TDLeaf(�). Eachnetworkwas trainedfor 50000
gamesand then played againstthe unmodifiedFIBS
weightsfor 1600games,with both sidessearchingto
two-ply andthematchscorerecorded.

The resultsfluctuatedaroundparity with the FIBS
weights(theproductof TD(�) training),with nostatisti-
cally significantchangein performancebeingobserved.
Thissuggeststhatthesolutionfoundby TD(�), is either
ator neartheoptimalfor two-ply play.

7. Discussion and Conclusion

We have introducedTDLeaf(�), a variantof TD(�) for
traininganevaluationfunctionusedin minimaxsearch.
Theonly extra requirementof the algorithmis that the
leaf-nodesof theprincipalvariationsbestoredthrough-
out thegame.

We presentedsomeexperimentsin which a chess
evaluationfunctionwastrainedby on-lineplayagainsta
mixtureof humanandcomputeropponents.Theexper-
imentsshow boththeimportanceof “on-line” sampling
(asopposedto self-play),and the needto startneara
goodsolutionfor fastconvergence.

We comparedtrainingusingleaf nodes(TDLeaf(�))
with training using root nodes,both in chesswith a
linear evaluationfunction and5-10 ply search,and in
backgammonwith a one hiddenlayer neural-network
evaluationfunction and2-ply search.We founda sig-
nificantimprovementtrainingontheleafnodesin chess,

which can be attributed to the substantiallydifferent
distribution over leaf nodescomparedto root nodes.
No suchimprovementwasobserved for backgammon
whichsuggeststhattheoptimalnetworkto usein 1-ply
searchis closeto theoptimalnetworkfor 2-ply search.

On the theoreticalside, it hasrecentlybeenshown
that TD(�) converges for linear evaluation functions
[10]. An interestingavenuefor further investigation
would be to determinewhetherTDLeaf(�) hassimilar
convergenceproperties.

References

[1] D F BealandM C Smith. LearningPiecevalues
UsingTemporalDif ferences.Journalof TheInter-
nationalComputerChessAssociation, September
1997.

[2] D P BertsekasandJ N Tsitsiklis. Neuro-Dynamic
Programming. AthenaScientific,1996.

[3] JordanPollack,Alan Blair, andMark Land. Co-
evolution of a BackgammonPlayer. In Proceed-
ings of the Fifth Artificial Life Conference, Nara,
Japan,1996.

[4] A L Samuel.SomeStudiesin MachineLEarning
UsingtheGameof Checkers.IBM Journal of Re-
search andDevelopment, 3:210–229,1959.

[5] Nicol Schraudolph,PeterDayan,andTerrenceSe-
jnowski. TemporalDif ferenceLearningof Posi-
tion Evaluationin theGameof Go. In JackCowan,
Gerry Tesauro,and JoshAlspector, editors,Ad-
vancesin Neural InformationProcessingSystems
6, SanFransisco,1994.MorganKaufmann.

[6] RichardSutton.Learningto Predictby theMethod
of TemporalDif ferences.MachineLearning, 3:9–
44,1988.

[7] GeraldTesauro.PracticalIssuesin TemporalDif-
ferenceLearning.MachineLearning, 8:257–278,
1992.

[8] Gerald Tesauro. TD-Gammon,a self-teaching
backgammon program, achieves master-level
play. Neural Computation, 6:215–219,1994.

[9] SebastianThrun. Learningto Play the Gameof
Chess. In G Tesauro,D Touretzky, andT Leen,
editors,Advancesin Neural InformationProcess-
ing Systems7, SanFransisco,1995.MorganKauf-
mann.

[10] John N Tsitsikilis and BenjaminVan Roy. An
Analysis of TemporalDif ferenceLearning with
FunctionApproximation. IEEE Transactionson
AutomaticControl, 42(5):674–690, 1997.

[11] StevenWalker, RaymondLister, andTom Downs.
On Self-LearningPatternsin the Othello Board
Gameby theMethodof TemporalDif ferences.In
C Rowles, H liu, and N Foo, editors,Proceed-
ingsof the6th Australian Joint ConferenceonAr-
tificial Intelligence, pages328–333,Melbourne,
1993.World Scientific.

