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Take-Points in Money Games 
 

by Rick Janowski 
 
 

Guidance on doubling strategy in backgammon is provided by the following two theoretical 
models: 
 

1. Dead-Cube Model  –  the classical model which makes no allowance for 
cube ownership. 
 
2. Live-Cube Model  –  the continuous model which assumes maximum 
possible cube ownership value. 
 

The former generally overestimates take-points and underestimates doubling-points (25% and 
50% respectively, assuming no gammons). Conversely, the latter model underestimates take-
points and overestimates doubling-points (20% and 80% respectively assuming no gammons). 
When considered together, however, they provide an envelope in which correct cube action 
decisions are to be found. 
 

Dead-Cube Model 
 
The owner of the cube is not afforded any additional benefits by it  –  he can neither double 
out his opponent nor raise the stakes at an opportune time. Effectively, the game is played out 
to its conclusion cubeless (but at the stake raised by the previous double). Consequently, take-
points can be readily established from the risk-reward ratio. 
 
Assume a double occurs in a game where, if played to conclusion, both players will win a 
mixture of single-games, gammons and backgammons. The effects of gammons and 
backgammons can be dealt with by introducing the following two variables for the player 
making the cube action decision (in this case, the player doubled): 
 

W = Average cubeless value of games ultimately won 

L  = Average cubeless value of games ultimately lost 
 

Consequently, a take would risk 2 1L −  points to gain 2 1W +  points. The minimum cubeless 
probability for a correct take (TP) is therefore: 
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                                                   …equation (1) 

 
This formula is also applicable when the data considered represents effective game winning 
chances. 

 
Live-Cube Model 
 
The owner of the cube is guaranteed to use the cube with optimal efficiency if he redoubles, at 
which point his opponent will have an optional pass/take. All subsequent redoubles by either 
of the two players are similarly optimal. There are, in fact, an infinite number of different 
possible live cube models identifiable by the following two variable factors: 
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1. The number of possible subsequent optimal redoubles. This can vary 
between unity and infinity. The infinite model is a good approximation to any 
of the finite models  –  all odd-numbered finite models give slightly higher 
cube-ownership values, whilst the even-numbered models give slightly lower 
ones. The discrepancy reduces progressively towards infinity. The relationship 
can be imagined as a dampened-sinusoidal curve with the infinite model as its 
axis. The man on the six-point versus man on the six-point position is an 
example of the single-subsequent redouble live model (take-point = 18.75%). In 
fact, this live-cube model is the only one that exists in practice. 
 
2. The change in gammon (and backgammon) rates throughout the life of the 
game. In most real backgammon positions, a player’s rate of winning gammons 
will decrease when his opponent redoubles. A typical example is when a shot is 
hit in an ace-point game, which subsequently gives the opponent little, if any, 
gammon risk. The same general reduction in gammon rate will normally occur 
in the live cube models, as the greater the number of subsequent optimal 
redoubles, the higher the chance that one or both players will, at some point, 
take men off. The rate of gammon loss could be linear (e.g., % loss per 
opponent’s redouble), or otherwise. 
 

Assuming an infinite possible number of subsequent optimal redoubles, and a constant 
gammon rate (W and L are constant) for the sake of simplicity, the following formula was 
obtained, after some detailed mathematical analysis: 
 

( )
( )TP

L
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0 5
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•
                                                                   …equation (2) 

 
Amazingly, the equation has a simple form. But what about the reduction in gammon rate, so 
far ignored? I investigated several different reducing models hoping to find that the above 
formula would still provide a reasonable estimate. What I found was much better; the formula 
is correct regardless of the gammon reduction rate considered, provided the W and L values 
used are average as opposed to initial ones! I wondered about this surprising result for some 
time and developed the following argument to support it: 
 
What is the difference, in terms of risk and reward, between the live and dead-cube models? 
There are additional benefits from holding the cube which add to the basic dead-cube reward 
(2W + 1). What are they and when do they occur? They occur on the point of redoubling 
when the redoubler’s equity jumps from 1·0 ppg (dead-cube) to 2·0 ppg (owning a 2-cube), a 
bonus of 1.0 ppg. (This is not strictly true, as the dead-cube equity is a little higher than 1·0 
ppg, but this effect is balanced out by the equity jump occurring in more games than the 
cubeless take-point.) Consequently,  if we add this bonus to the reward used in equation (1) 
for the dead-cube model, we arrive at equation (2) for the live cube model. As this argument is 
independent of any considerations of reducing gammon-rates, they would, indeed, appear to 
be irrelevant. 
 

General Cube Model 
 
Equations (1) and (2) above represent the take-point envelope in which correct take-points are 
to be found (the one known exception being the man on the six-point versus man on the six-
point position). In any given position, the true take-point could be assessed by interpolating 
between the dead and live values, based on some intermediate value of cube-life, calculated, 
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estimated, or just plain guessed at.  The general form of these equations, given below again 
for clarity, allows a more elegant solution: 

( )
( )TP
L
W Ldead =

−
+
0 5•

                                                                   …equation (1) 

( )
( )TP

L
W Llive =

−
+ +

0 5
0 5

•
•

                                                               …equation (2) 

Notice that the only difference is in the equations’ denominators, with the live value having 
the additional bonus from cube-ownership, explained before. As this bonus represents the 
expected equity jump, it is proportional to the degree of cube-life of the position (and 
inversely proportional to its long-term volatility). Intermediate models can, therefore, be 
represented by a cube-life index, x, which varies between 0·0 (dead cube, maximum volatility) 
and 1·0 (live-cube, zero volatility). The general form of equations (1) and (2) above is, 
therefore: 

( )
( )TP

L
W L xgeneral =

−
+ +

0 5
0 5
•

•
                                                       …equation (3) 

Clearly the value of x varies from position to position, and will commonly be different for 
both sides. Some of the important factors that determine its value include: 
 

1. The distance from the target  –  the further away from the optimal doubling 
point you are, the less likely you are to hit the bull’s-eye. 
 
2. The size of the target  –  the size of the doubling window governs the size of 
the bull’s-eye. 
 
3. The relative movement between the shooter and the target –  the volatility of 
the position governs the likelihood of hitting the bull’s-eye, or even finding it, 
for that matter. 
 

Finding accurate values for x is a difficult, almost impossible, task. However, we can make 
estimates of  typical values for typical situations. In my opinion, for the majority of typical 
positions, x will commonly be between about 1

2  and 3
4 , with 2

3  being a normal value. 
 

Cube Action Tables 
 
To provide guidance on cube action, and to enable the reader to inspect the general results, the 
following tables are included: 
 

Tables 1a, 1b, 1c  –  Cubeless take-points (for varying values of W and L) for x 
values of 0·0 (dead), 1·0 (live), and 2

3  (normal). 
 
Tables 2a, 2b, 2c  –  Cubeless take-equities (for varying values of W and L) for 
x values of 0·0 (dead), 1·0 (live), and 2

3  (normal). 
 

Cubeless take-equities (Etake ) are calculated from the following general formula: 
 

( )E TP W L Ltake = + −                                                                  …equation (4)
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Cubeless Take-Point Tables 
 

 

Table 1a Average cubeless win value  W 

Dead ( )x = 0 0•   1·00 1·25 1·50 1·75 2·00 

Average 1·00 25·0% 22·2% 20·0% 18·2% 16·7% 

cubeless 1·25 33·3% 30·0% 27·3% 25·0% 23·1% 

loss 1·50 40·0% 36·4% 33·3% 30·8% 28·6% 

value 1·75 45·5% 41·7% 38·5% 35·7% 33·3% 

L 2·00 50·0% 46·2% 42·9% 40·0% 37·5% 
 

 

 

 

Table 1b Average cubeless win value  W 

Live ( )x = 1 0•   1·00 1·25 1·50 1·75 2·00 

Average 1·00 20·0% 18·2% 16·7% 15·4% 14·3% 

cubeless 1·25 27·3% 25·0% 23·1% 21·4% 20·0% 

loss 1·50 33·3% 30·8% 28·6% 26·7% 25·0% 

value 1·75 38·5% 35·7% 33·3% 31·3% 29·4% 

L 2·00 42·9% 40·0% 37·5% 35·3% 33·3% 
 

 

 

 

Table 1c Average cubeless win value  W 

Normal ( )x = 2
3  1·00 1·25 1·50 1·75 2·00 

Average 1·00 21·4% 19·4% 17·6% 16·2% 15·0% 

cubeless 1·25 29·0% 26·5% 24·3% 22·5% 20·9% 

loss 1·50 35·3% 32·4% 30·0% 27·9% 26·1% 

value 1·75 40·5% 37·5% 34·9% 32·6% 30·6% 

L 2·00 45·0% 41·9% 39·1% 36·7% 34·6% 
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Cubeless Take-Equity Tables 

 

 

Table 2a Average cubeless win value  W 

Dead ( )x = 0 0•   1·00 1·25 1·50 1·75 2·00 

Average 1·00 -0·500 -0·500 -0·500 -0·500 -0·500 

cubeless 1·25 -0·500 -0·500 -0·500 -0·500 -0·500 

loss 1·50 -0·500 -0·500 -0·500 -0·500 -0·500 

value 1·75 -0·500 -0·500 -0·500 -0·500 -0·500 

L 2·00 -0·500 -0·500 -0·500 -0·500 -0·500 
 

 

 

 

Table 2b Average cubeless win value  W 

Live ( )x = 1 0•   1·00 1·25 1·50 1·75 2·00 

Average 1·00 -0·600 -0·591 -0·583 -0·577 -0·571 

cubeless 1·25 -0·636 -0·625 -0·615 -0·607 -0·600 

loss 1·50 -0·667 -0·654 -0·643 -0·633 -0·625 

value 1·75 -0·692 -0·679 -0·667 -0·656 -0·647 

L 2·00 -0·714 -0·700 -0·688 -0·676 -0·667 
 

 

 

 

Table 2c Average cubeless win value  W 

Normal ( )x = 2
3  1·00 1·25 1·50 1·75 2·00 

Average 1·00 -0·571 -0·565 -0·559 -0·554 -0·550 

cubeless 1·25 -0·597 -0·588 -0·581 -0·575 -0·570 

loss 1·50 -0·618 -0·608 -0·600 -0·593 -0·587 

value 1·75 -0·635 -0·625 -0·616 -0·609 -0·602 

L 2·00 -0·650 -0·640 -0·630 -0·622 -0·615 
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Example 
 
Consider the following position, from the 12th game of the semi-finals match between Nack 
Ballard and Mike Senkiewicz at the Reno Masters in 1986. Senkiewicz, trailing 9-20 in this 
23-point match, gave an initial double, which Ballard passed. Bill Robertie, analysing this 
match in his book Reno Quiz, evaluates the pass as correct at this match score. What would 
the correct cube action be in a money game? 
 
 

64

2

Should White Take?
12 11 10 9 8 7 6 5 4 3 2 1

13 14 15 16 17 18 19 20 21 22 23 24

 
 
 

Using Robertie’s cubeless rollout figures: 
 

Black wins single-game:          47% 
Black wins gammon:               17% 
Black wins backgammon:          1% 
Black’s total wins:                   65% 
White wins single-game           31% 
White wins gammon:                 4% 
White’s total wins:                   35% 

 
Black’s cubeless equity:   0·450 ppg 

 
Considering White’s cube action, 
 

( )
( )

( )
( )L W=

+ × + ×
+ +

= =
+ ×

+
=

47 17 2 1 3
47 17 1

1 292
31 4 2

31 4
1 114• •and  

 
 
1. Dead-Cube (x = 0·0) 
 
From equations (1) and (4): 

( )
( )

( )TP Edead take=
−

+
= = × + − = −

1 292 0 5
1 292 1 114

0 3292 0 3292 1 292 1 114 1 292 0 500
• •

• •
• • • • • •  and    clearly
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2. Live-Cube (x = 1·0) 
 
From equations (2) and (4): 
 

( )
( )

( )TP Elive take=
−

+ +
= = × + − = −

1 292 0 5
1 292 1 114 0 5

0 2725 0 2725 1 292 1 114 1 292 0 636
• •

• • •
• • • • • •  and  

 
3. Normal-Cube (x = 2

3 ) 
 
From equations (3) and (4): 
 

( )
( )

( )TP Etake2
3

1 292 0 5
1 292 1 114 0 333

0 2892 0 2892 1 292 1 114 1 292 0 596=
−

+ +
= = × + − = −

• •
• • •

• • • • • •  and  

 
In the actual position, White, with 35%  winning chances,  can take for money, regardless of 
the cube model considered. 
 

Other Cube Action Decisions 
 
So far, only take-points have been considered. There are many other doubling decisions to 
consider  –  when to redouble, when to beaver, etc. Correct cube-action can be established by 
comparing the resultant equities from the alternative cube positions  –  owned (EO), 
unavailable (EU ), and centred (EC ): 
 

( )[ ]E C p W L x LO V= + + −0 5•                                                …equation (5) 

( )[ ]E C p W L x L xU V= + + − −0 5 0 5• •                                  …equation (6) 

( )
( )[ ]E

C
x

p W L x L xC
V=

−
+ + − −

4
4

0 5 0 25• •                         …equation (7) 

 

where   CV =  cube-value (i.e., the stake-level)  

p =  cubeless winning probability 

 
Note that equation (7) is not applicable if the Jacoby Rule is in operation. 
 
From manipulation of the above equations, the following table of formulae, covering the full 
range of cube-actions in money games, has been derived. Notice two particularly interesting 
features from this table: 
 

1. In the live-cube model, when gammons and backgammons are active, it is never 
correct to double, as positions strong enough to double are also too good to double! 
This is understandable because the complete lack of volatility protects the double-out. 
 
2. Assuming the Jacoby Rule is not in operation, then initial double-points are always 
lower than redouble-points. When the cube is dead or live, they coincide, but diverge 
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for intermediate values of cube-life.  Maximum divergence occurs when x is about 
0·57, and typically ranges between 2.00% (W = 2, L = 2) and 3.75% (W = 1, L = 1). 
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Cube Action Formulae 
 

Cube Parameter Dead Cube 

( )x = ⋅0 0  

Live Cube 

( )x = ⋅1 0  

General Case 

( )x varies  

Take-point, TP  
=

−
+

( · )
( )
L
W L

0 5
 =

−
+ +

( · )
( · )

L
W L

0 5
0 5

 =
−

+ +
( · )

( · )
L

W L x
0 5

0 5
 

Beaver-point, BP  
=

+
L

W L( )
 =

+ +
L

W L( · )0 5
 =

+ +
L

W L x( · )0 5
 

Racoon-point, RP  
=

+
L

W L( )
 =

+
+ +

( · )
( · )

L
W L

0 5
0 5

 =
+

+ +
( · )

( · )
L x

W L x
0 5

0 5
 

Initial double-point, ID  

(no Jacoby) 

=
+
L

W L( )
 =

+
+ +
( )

( · )
L

W L
1
0 5

 ( )( )
( )=

+

+ +

−
−L

W L x

x
x

x3
2 2

0 5•
 

Initial double-point, ID1  

(Jacoby—no beavers) 

=
−
+ −

( · )
( )

L
W L

0 5
1

 =
+

+ +
( )

( · )
L

W L
1
0 5

 ( )( )
( )=

+

+ +

−
−k L

W L x

x
x

x
1

3
2 2

0 5•
 

   where 

( ) ( )( )
( )( )k

W L L x
L W L x1

0 5 1
1

=
+ − ⋅ −

+ − −
 

Initial double-point, ID2  

(Jacoby with beavers) 

=
−

+ −
( · )

( · )
L

W L
0 25

0 5
 

/<
−
+ −

( · )
( )

L
W L

0 5
1

 

=
+

+ +
( )

( · )
L

W L
1
0 5

 ( )( )
( )=

+

+ +

−
−k L

W L x

x
x

x
2

3
2 2

0 5•
 

   where 

( ) ( )( )
( )( )k

W L L x
L W L x

k2 1

0 25 1
0 5 1

=
+ − ⋅ −

+ − −
/<

•
 

Redouble-point, RD  
=

+
L

W L( )
 =

+
+ +
( )

( · )
L

W L
1
0 5

 =
+

+ +
( )

( · )
L x

W L x0 5
 

Cash-point, CP  
=

+
+

( · )
( )
L
W L

0 5
 =

+
+ +
( )

( · )
L

W L
1
0 5

 =
+ +
+ +

( · · )
( · )
L x
W L x

0 5 0 5
0 5

 

Too good point, TG  
=

+
+

( )
( )

L
W L

1
 =

+
+ +
( )

( · )
L

W L
1
0 5

 =
+

+ +
( )

( · )
L

W L x
1
0 5

 

where W = Average cubeless value of games ultimately won 

L = Average cubeless value of games ultimately lost 

x = Cube life index (0·0 for dead cube, 1·0 for live cube) 

k1 = Jacoby factor (no beavers) 

k2 = Jacoby factor (with beavers) 
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Appendix 1:  Miscellaneous Equity Relationships 
 
The various equities for the different cube positions may be expressed in terms of the cube-
life index (x), cubeless probability of winning (p), and cubeless equity (E) as follows: 
 

Cubeless Equity                ( )E p W L L= + −  
 
Cube-owned Equity         E C E x pO V= + 0 5·  
 

Cube-unavailable Equity   ( )[ ]E C E x pU V= − −0 5 1•  

Cube-centred Equity         ( ) ( )[ ]E
C

x
E x pC

V=
−

+ −
4
4

0 5 0 5• •  

The cube-centred equity may also be expressed in terms of the cube-owned and cube-
unavailable equities (with their respective CV  values set at unity) as follows: 

( ) ( ) ( ) ( ) ( ) ( )E
x

E x
x

E x
x

E EC O U O U=
−

− =
−

+ =
−

+
4

4
0 25

4
4

0 25
2

4
• •  

Note that the cube-centred equity formulae given above are not applicable if the Jacoby Rule 
is in operation. The cube-owned and cube-unavailable equities corresponding to the various 
cube-action points are shown by the following table: 

 

Cube Parameter Cube-owned Equity 

EO  

Cube-unavailable Equity 

EU  

Take-point −0 5· CV  ( )− +0 5 1• x CV  

Beaver-point 0  −0 5· xCV  

Racoon-point +0 333· xCV  0  

Initial double-point 

(no Jacoby) 

( )
( )+

−
−

x x
x

CV2
3
2

 ( )+
−
x

x
CV4 2

 

Initial double-point 

(Jacoby—no beavers) 
( ) ( )[ ]C k L kV

x x
x1 12

3
2 1−

− + −  ( )( ) ( )[ ]C k L kV
x x

x2
3
21 11 1−

− − + −  

Initial double-point 

(Jacoby with beavers) 
( ) ( )[ ]C k L kV

x x
x2 22

3
2 1−

− + −  ( )( ) ( )[ ]C k L kV
x x

x2
3
22 21 1−

− − + −  

Redouble-point +xCV  +0 5· xCV  

Cash-point ( )+ +0 5 1• x CV  +0 5· CV  

Too good point +CV  ( )+ −1 0 5• x CV  
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Note that the above equities are independent of W and L apart for the initial double equities 
with the Jacoby Rule in operation. Also note that the cube-unavailable equity required for a 
redouble is the cube-life index (x) multiplied by the stake of the redoubled cube (CV ).  Using 
2

3  as a normal value for x, the required equities after doubling to 2 are 0·667 and 0·500, for 
redoubles and initial doubles (no Jacoby) respectively. These values are fairly consistent with 
typical limiting values obtained from hand rollouts (generally minimum redoubles are 
between 0·6 and 0·7 ppg, and between 0·4 and 0·6 ppg for initial doubles). Consequently, 2

3  
would appear to be a good estimate of the cube-life index. 
 
 
Appendix 2:  Refined General Model 
 
A more rigorous analysis may be performed by considering different cube-life indices for 
both sides, which is what normally happens in practice. Let x1 and x2  be the cube-life 
indices for the player making the cube-action decision, and his opponent, respectively. 
Following a similar analysis as before, the equities from the alternative cube positions, 
owned (EO), unavailable (EU ), and centred (EC ), were derived: 

( )[ ]E C p W L x LO V= + + −0 5 1•                                               …equation 

(8) 

( )[ ]E C p W L x L xU V= + + − −0 5 0 52 2• •                               …equation (9) 

( ) ( ) ( )[ ]
( ) ( )[ ]E

C p W L x Q L L x

Q L L x
C

V x

x

=
+ + − + − + −

+ − + −

2 0 5 1 0 5 1

1 0 5 1

2 2

2

• •

•
     …equation (10) 

where   
( )
( )Q
W L x

W L xx =
+ +

+ +

0 5

0 5
2

1

•

•
 

CV =  cube-value (i.e., the stake-level)  

p =  cubeless winning chances 

 
The cube-centred-equity (EC ), can also be estimated from the simpler, but more approximate, 
expression: 

( )
( )[ ]E C

x E x E

x x x x
C V

O U≈
+

+ −
4

4 2
1 2

1 2 1 2

                                                   …equation (11) 

where EO  and EU  are calculated from equations (8) and (9) above, with CV  equal to 1·0 in 
both cases. Note that equations (10) and (11) are not applicable if the Jacoby Rule is in 
operation. 
 

From manipulation of the above equations, the following table of cube-action formulae, 
allowing for different cube-life indices for both sides, has been derived: 
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Cube Action Formulae (Refined General Model) 
 

Cube Parameter Refined General Model Formula 

( )x x1 2 and  vary  

Take-point 
TP

L
W L x

=
−

+ +
( · )

( · )
0 5
0 5 1

 

Beaver-point 
BP

L
W L x

=
+ +( · )0 5 1

 

Racoon-point 
RP

L x
W L x

=
+

+ +
( · )

( · )
0 5

0 5
2

2

 

Initial-double point 

(no Jacoby) 

ID
L x G

W L x
x=

+ − +
+ +

( · · )
( · )

0 5 0 5
0 5

2

2

 

where 

( )
( )( ) ( )( )G

W L x

L W L x L x W L xx =
+ +

+ + + − + + +

0 5 0 5

1 0 5 0 5 0 5
1

2 2 1

• •

• • •
 

alternatively, 

( )
( )ID

L H x

W L x x
x≈

+

+ + −
2

2 10 5•
  where 

( )
( )H

x

xx =
−

−

3

4 2
2

2

 

Initial double-point 

(Jacoby—no beavers) 

ID k ID1 1=  
where 

( ) ( )( )
( )( )k

W L L x

L W L x

C

C

1

0 5 1

1
=

+ − ⋅ −

+ − −
 

and  
( ) ( )

( )x
x W x L

W LC =
− + −

+ −
1 21 1

2
 

Initial double-point 

(Jacoby with Beavers) 

ID k ID2 2=  
where 

( ) ( )( )
( )( )k

W L L x

L W L x
k

C

C

2 1

0 25 1

0 5 1
=

+ − ⋅ −

+ − −
/<

•
 

Redouble-point 
RD

L x
W L x x

=
+

+ + −
( )

( · )
2

2 10 5
 

Cash-point 
CP

L x
W L x

=
+ +
+ +

( · · )
( · )

0 5 0 5
0 5
2

2

 

Too Good point 
TG

L
W L x

=
+

+ +
( )

( · )
1
0 5 1
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Appendix 3:  Jacoby Rule Considerations 
 
The Jacoby Rule suppresses gammons and backgammons until the cube is first turned. 
Consequently, initial double points can be markedly different from the corresponding points 
where gammons and backgammons are active with a centred-cube. To help us to understand 
this general relationship, consider how the number of market-losing sequences required for an 
initial double varies: 

 

n
N

E
E

P

N

=
+









1

∆
∆

                                                                           …equation (12) 

 
where n is the minimum number of market-losing sequences required for a double, N is the 
(population size, commonly 1296, occasionally 36), ∆EP  is the average favourable equity 
swing from the market-losing sequences, and ∆EN  is the average adverse equity swing from 
the non-market-losing sequences (always of positive value in this equation). 
 
With regard to the market losing sequences, the average equity with the cube turned is the 
same value regardless of Jacoby considerations as gammons are activated in either case. If the 
cube is not turned, however, the average equities can be different dependent on whether 
gammons are active or not (i.e., the position might become too good rather than just a cash). 
Accordingly, the positive equity swings can often be greater (never less) when the Jacoby 
Rule is in operation than would be the case otherwise. Inspection of equation (13) shows that 
this has the net effect of reducing the number of market-losing sequences (and thus winning 
chances) required for an initial double. 
 
With regard to the non-market-losing sequences, again there is no difference in the average 
equities with the cube turned. If the cube remained centred, you cannot become too good 
(otherwise you would have lost your market), but your opponent might! Consequently, the 
negative equity swings can often be greater (never less) when the Jacoby Rule is operation, 
with the net effect of increasing the number of market-losers required for an initial double. 
 
What is the overall effect of the Jacoby Rule on initial doubling strategy?  In general terms, 
you should be more aggressive with the cube than normal, when you are likely to win a 
greater proportion of gammons than your opponent (i.e., W exceeds L), and more conservative 
otherwise. Interestingly and significantly, where an aggressive policy is indicated, the 
prospect of the double being  beavered (correctly) has the effect of curbing that aggression. 
 
The degree of modification to initial cube action policy from normal is directly related to the 
tendency of a position to  suddenly become too good, for either side. This tendency is roughly 
proportional to the volatility of the position. In the live cube model (zero volatility), the initial 
double point is unaffected by Jacoby considerations: it still coincides with the cash point, as 
the margin of market-loss is non-existent. In the dead-cube model (maximum volatility) 
however, this effect is at its most extreme: complete market loss occurs for the winning side, 
and if he has any gammons his position will become too good. 
 
How, then can these effects and tendencies be incorporated into a general cube model?  We 
can make a start by introducing the following general relationship: 
 

ID k IDJ =                                                                                   …equation (13) 
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where IDJ  is the initial double-point with the Jacoby Rule in operation, k is a relational 
parameter, as yet undefined, which we’ll call the Jacoby factor, and ID is the normal initial 
double-point. To define k, the following factors must be taken into account: 
 

1. The limiting values of k at the extremities of the volatility spectrum (dead-
cube and live-cube models). These can be determined fairly readily. 
 
2. Whether beavers are allowed or not. 
 
3. The method by which intermediate volatility, and thus cube-life, is modelled, 
i.e.,  the basic general model (x), or the refined general model (x x1 2 and ). 
 

Initially, the simpler basic general model will be considered, for the two beaver-cases, before 
the more complicated refined general model is tackled. 
 

Jacoby—no Beavers 
 
The general relationship given in equation (13) above can be redefined for this specific case 
as follows: 
 

ID k ID1 1=                                                                                    …equation (14) 
 

where ID1 is the initial double-point with the Jacoby Rule in operation and no beavers 
allowed, k1 is the Jacoby factor (no beavers), and ID is the normal initial double-point. When 
the cube is live (x = 1 0· ), k1 is of unit value, as both initial double-points coincide with the 
cash-point. When the cube is dead, however, k1 has the following non-trivial value: 
 

( )( )
( )k

W L L
L W Ldead1

0 5
1

=
+ −

+ −
•

                                                        …equation (15) 

 
The following table shows how k dead1  varies with W and L. 
 

Jacoby Factor k1 Average cubeless win value  W 

( )x = 0 0•  1·00 1·25 1·50 1·75 2·00 

Average 1·00 1·000 0·900 0·833  0·786 0·750 

cubeless 1·25 1·080 1·000 0·943 0·900 0·867 

loss 1·50 1·111 1·048 1·000 0·963 0·933 

value 1·75 1·122 1·071 1·032 1·000 0·974 

L 2·00 1·125 1·083 1·050 1·023 1·000 

 
Notice some important features from this table: 
 

1. For all positions where W is equal to L, there is no difference in initial 
doubling strategy from normal. 
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2. For all positions where W exceeds L, initial doubling strategy with the 
Jacoby Rule in operation is more aggressive than normal, as it is beneficial to 
activate gammons. Note that in these positions it is correct to double even when 
your equity is negative! 
 
3. For all positions where L exceeds W, initial doubling strategy with the 
Jacoby Rule in operation is more conservative than normal, as it is 
disadvantageous to activate gammons. Note that in these positions, greater 
equity is required for an initial double than a redouble (Latto’s Paradox). 
 

Having defined k1 at the extremities of the volatility spectrum, it remains to formulate an 
algorithm for all intermediate values.  The simplest expression which satisfies our limited 
criteria is given below: 
 

( ) ( )( )
( )( )k

W L L x
L W L x1

0 5 1
1

=
+ − ⋅ −

+ − −
                                                   …equation (16) 

 
This formula assumes a roughly linear relationship between the Jacoby factor and the cube-
life index, which certainly seems reasonable. Besides, if the relationship is not linear, in 
which direction should it curve, and what should its curvature be? In the absence of any 
greater understanding, a more elaborate algorithm would serve no useful purpose.  Even if a 
more accurate algorithm was available, it is unlikely that the greater precision afforded would 
be significant. 
 
The following table shows how k1 varies with W and L, for a typical position ( x = 2

3 ). 
 

Jacoby Factor k1 Average cubeless win value  W 

( )x = 2
3  1·00 1·25 1·50 1·75 2·00 

Average 1·00 1·000 0·978 0·962  0·948 0·938 

cubeless 1·25 1·017 1·000 0·986 0·975 0·966 

loss 1·50 1·026 1·011 1·000 0·990 0·982 

value 1·75 1·030 1·018 1·008 1·000 0·993 

L 2·00 1·031 1·021 1·013 1·006 1·000 
 
Note that the maximum difference between the Jacoby and non-Jacoby values is about 6%, 
and the greater differences occur when W exceeds L. 
 

Jacoby with Beavers 
 
The general relationship given in equation (13) above can be redefined for this specific case 
as follows: 
 

ID k ID2 2=                                                                                    …equation 
(17) 
 

where ID2  is the initial double-point with the Jacoby Rule in operation with beavers allowed, 
k2  is the Jacoby factor (with beavers), and ID is the normal initial double-point. When the 
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cube is live (x = 1 0· ), k2  is of unit value, as both initial double-points coincide with the cash-
point. When the cube is dead, however, k2  must be the greater of either k dead1  (when 
beavering is wrong) or the following expression: 
 

( )( )
( )k

W L L
L W L

kdead dead2 1

0 25
0 5

=
+ − ⋅

+ −
/<

•
                                    …equation (18) 

 
The following table shows how k dead2  varies with W and L. 
 

Jacoby Factor k2  Average cubeless win value  W 

( )x = 0 0•  1·00 1·25 1·50 1·75 2·00 

Average 1·00 1·000 0·964 0·938  0·917 0·900 

cubeless 1·25 1·080 1·000 0·978 0·960 0·945 

loss 1·50 1·111 1·048 1·000 0·985 0·972 

value 1·75 1·122 1·071 1·032 1·000 0·989 

L 2·00 1·125 1·083 1·050 1·023 1·000 

 
Notice some important features from this table: 
 

1. For all positions where W is equal to L, there is no difference in initial 
doubling strategy from normal. 
 
2. For all positions where W exceeds L, initial doubling strategy with the 
Jacoby Rule in operation is more aggressive than normal, as it is beneficial to 
activate gammons. Note that in these positions it is correct to double even when 
your equity is negative, and it is correct for your opponent to beaver! These are 
pure Kauder paradox positions. 
 
3. For all positions where L exceeds W, initial doubling strategy with the 
Jacoby Rule in operation is more conservative than normal, as it is 
disadvantageous to activate gammons. Note that in these positions, greater 
equity is required for an initial double than a redouble (Latto’s Paradox). Also 
note that as beavering is incorrect in these positions, there is no difference from 
the no-beavers case. 
 

Having defined k2  at the extremities of the volatility spectrum, it remains to formulate an 
algorithm for all intermediate values.  The simplest expression which satisfies our limited 
criteria is given below: 
 

( ) ( )( )
( )( )k

W L L x
L W L x

k2 1

0 25 1
0 5 1

=
+ − ⋅ −

+ − −
/<

•
                                      …equation (19) 

 
This formula assumes a roughly linear relationship between the Jacoby factor and the cube-
life index, as does equation (16) for the no beavers case. As discussed previously, this 
assumption is certainly reasonable, and it is unlikely that the greater precision afforded by a 
more accurate algorithm would be significant, even were it available. 
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The following table shows how k2  varies with W and L, for a normal position ( x = 2
3 ). 

 

Jacoby Factor k2  Average cubeless win value  W 

( )x = 2
3  1·00 1·25 1·50 1·75 2·00 

Average 1·00 1·000 0·990 0·982  0·976 0·971 

cubeless 1·25 1·017 1·000 0·994 0·988 0·984 

loss 1·50 1·026 1·011 1·000 0·995 0·992 

value 1·75 1·030 1·018 1·008 1·000 0·997 

L 2·00 1·031 1·021 1·013 1·006 1·000 
 

Note that the maximum difference between the Jacoby and non-Jacoby values is about 3% 
(compared to 6% with the no-beavers case), and the differences are roughly proportional to 
the difference between W and L (i.e., W L− ). 
 

Jacoby and the Refined General Model 
 
When separate cube-life indices are considered for the player making the cube-action decision 
and his opponent ( x x1 2 and  respectively), the algorithms we require for k k1 2 and  are 
slightly more difficult to formulate, as they must depend on both x x1 2 and . The simplest 
approach is to utilise the previously derived expressions for k k1 2 and  by considering a 
composite value of x x1 2 and  ( xC ) which satisfies the following limiting criteria: 
 

1. When x x x x xC1 2 1 2= = = then . Clearly when the refined general model 
simplifies to the basic general model, the basic model’s expressions for 
k k1 2 and  must still hold good. 
 
2. When W x xC= =1 2 then . When you cannot win any gammons or 
backgammons, only your opponent  can become too good. Consequently the 
initial double-point cannot be dependent on your volatility, and must, by 
elimination, be dependent on his. 

 
3. When L x xC= =1 1 then . When your opponent cannot win any gammons 
or backgammons, only you can become too good. Consequently the initial 
double-point cannot be dependent on his volatility, and must, by elimination, be 
dependent on yours. 

 
The simplest expression which satisfies the above criteria is given below: 

 
( ) ( )

( )x
x W x L

W LC =
− + −

+ −
1 21 1

2
                                                        …equation (20) 

 
For the Jacoby—no Beavers case, initial double points can be calculated from equation (14) 
and the suitably revised version of equation (16), both given below for clarity: 

 
ID k ID1 1=                                                                                    …equation (14) 
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( ) ( )( )
( )( )k

W L L x

L W L x

C

C

1

0 5 1

1
=

+ − ⋅ −

+ − −
                                                …equation (21) 

 
where ID is calculated from the relevant equation in Appendix 1. 
 

For the Jacoby with Beavers case, initial double points can be calculated from equation (17) 
and the suitably revised version of equation (19), both given below for clarity: 

 
ID k ID2 2=                                                                                    …equation 
(17) 
 

( ) ( )( )
( )( )k

W L L x

L W L x
k

C

C

2 1

0 25 1

0 5 1
=

+ − ⋅ −

+ − −
/<

•
                                     …equation (22) 

As before, this analysis assumes roughly linear relationships between the Jacoby factors and 
the cube-life indices. This assumption is certainly reasonable, and it is unlikely that the 
greater precision afforded by a more accurate algorithm would be significant, even were it 
available. 
 

Cube-centred Equities 
 
No simple formula is available to calculate cube-centred equities, but we do know four points 
where the cubeless winning chances and corresponding equities are known. These are given 
below, in order of increasing probability (and equity): 
 

Point 1:  The opponent’s cash-point, where 
 

( )
( )p

L x

W L x
EC1

2

2
1

0 5 1

0 5
1=

+ −

+ +
= −

•

•
   and   ppg  

 
If using the basic general model, substitute x x for 2 . 

 
Point 2:  The opponent’s initial double-point, where 

 

( )[ ]p ID ID E p W L x LC2 1 2 2 2 11 1 2 0 5= − − = + + −  or      and   •  

 
If using the basic general model, substitute x x for 1. 

 
Point 3:  Your initial double-point, where 

 

( )[ ]p ID ID E p W L x L xC3 1 2 3 3 2 22 0 5 0 5= = + + − −  or     and   • •  

 
If using the basic general model, substitute x x for 2 . 

 
Point 4:  Your cash-point, where 
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( )
( )p

L

W L x
EC4

1
4

1

0 5
1=

+

+ +
= +

•
   and   ppg  

 
If using the basic general model, substitute x x for 1. 

The cube-centred equity can then be estimated from a known cubeless probability by 
interpolation between the two known probabilities directly above and below it by using the 
following general formula: 

( ) ( )
( )E E E E

p p

p pC n n n
n

n n

= + −
−

−+
+

+
1

1

1

 

Similarly, the cubeless probability can be estimated from a known cube-centred equity by 
interpolation between the two known cube-centred equities directly above and below it by 
using the following modified version of the same general formula: 

( ) ( )
( )p p p p
E E

E En n n
n C

n n

= + −
−

−+
+

+
1

1

1

 

A more elaborate analysis could be carried out by fitting a polynomial curve through the four 
points, but the greater sophistication is unlikely to improve accuracy significantly. 
 

Kauder Paradox Positions 
 
Kauder paradox positions occur when it is correct to give an initial double, yet the opponent 
should beaver. They arise because the Jacoby Rule occasionally allows the doubler to 
minimise his losses. The mathematical condition for a Kauder paradox is given below: 

RP p ID≥ ≥ 2  

where RP is the racoon-point, p is the cubeless winning probability, and ID2  is the initial 
double-point. Similarly, the Kauder paradox window (KPW), can be expressed as: 

KPW RP ID= − 2  

If KPW is negative, then a Kauder paradox cannot occur. From the basic general cube-model, 
the following more detailed expression for the Kauder paradox window was readily 
established. 

( )( )[ ]
( )KPW

L x k L

W L x

x
x

x

=
+ − +

+ +

−
−0 5

0 5
2

3
2 2•

•
                                      …equation (23) 

Clearly, Kauder paradoxes are more likely to occur when the position is volatile (and thus x is 
small).  The following table shows the limiting x values, calculated from equation (23), above 
which a Kauder paradox cannot occur, against values of W and L: 
 

Kauder Paradox Average cubeless win value  W 

Limiting x values 1·00 1·25 1·50 1·75 2·00 

Average 1·00 0·000 0·124 0·198 0·248 0·285 

cubeless 1·25 none 0·000 0·099 0·164 0·210 

loss 1·50 none none 0·000 0·082 0·140 

 value 1·75 none none none 0·000 0·070 



 

20 

L 2·00 none none none none 0·000 
 
From inspection of the above values, the following approximate expressions for the limiting x 
values (xKP ) was established: 

x
W
L

L
WKP ≈ − −0 59 0 01 0 58• • •

                              …equation (24) 

x
L

WKP ≈ −0 58 0 58• •
                                                            …equation (24A) 

 
Notice how both the volatility and favourable gammon rate must be high for a Kauder 
paradox to be possible, which is not too surprising. 

 

Latto’s Paradox Positions 
 
Latto’s paradox positions occur when a redouble is correct but an initial double is not. They 
arise because the Jacoby Rule occasionally allows the doubler to maximise his winnings by 
avoiding gammon losses. The mathematical condition for a Latto’s paradox is given below: 

ID p RD1 ≥ ≥  

where RD is the redouble-point, p is the cubeless winning probability, and ID1 is the initial 
double-point (or ID2  which has the same value here). Similarly, the Latto’s paradox window 
(LPW), can be expressed as: 

LPW ID RD= −1  

If LPW is negative, then a Latto’s paradox cannot occur. From the basic general cube-model, 
the following more detailed expression for the Latto’s paradox window was readily 
established. 

( )( )[ ]
( )LPW

k L L x

W L x

x
x

x

=
+ − −

+ +

−
−1

3
2 2

0 5•
                                              …equation (25) 

Note that k1 can be substituted by k2  which has the same value here. 
 

Latto’s paradoxes, just like their Kauder counterparts, are more likely to occur when the 
position is volatile (and thus x is small).  The following table shows the limiting x values, 
calculated from equation (25), above which a Latto’s paradox cannot occur, against values of 
W and L: 
 

Latto’s Paradox Average cubeless win value  W 

Limiting x values 1·00 1·25 1·50 1·75 2·00 

Average 1·00 0·000 none none none none 

cubeless 1·25 0·322 0·000 none none none 

loss 1·50 0·484 0·248 0·000 none none 

 value 1·75 0·584 0·396 0·200 0·000 none 
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L 2·00 0·652 0·496 0·333 0·167 0·000 
 
From inspection of the above values, the following approximate expressions for the limiting x 
values ( xLP ) was established: 

x
W
L

L
WLP ≈ − −1 6 1 5 0 1· · ·                                                         …equation (26) 

x
W
LLP ≈ −1 3 1 3• •                                                       …equation (26A) 

Notice that Latto’s paradoxes, unlike their Kauder counterparts, don’t need particularly high 
volatility for them to be possible. With very high unfavourable gammon rates, they can occur 
under normal cube-life conditions. This is certainly a surprising result, to me anyway. What 
are the reasons that they appear to be rare? Here are a few possibilities: 
 

1. In the vast majority of positions, the player with the favourable gammons 
reaches an initial doubling position first. This is because both players start as 
roughly equal favourites with roughly equal gammon chances. The player who 
gets the better of the early game has usually done so by hitting shots, creating a 
blockade, escaped his back men, or by gaining an edge in the race.  These 
variations rarely lead to unfavourable gammons, quite the contrary. 
 
2. Latto’s paradox positions usually arise after a significant change in fortune, 
e.g., leaving multiple shots to the opponent’s deep anchor or back game 
position. Remember, your opponent needs to become too good after your non-
market losing sequences for the Jacoby Rule to have any effect on normal 
doubling policy. Normally, your opponent would have doubled you before this 
change in fortune happens. Moreover, the Jacoby Rule encourages his 
aggressive initial cube-action. 
 
3. All too often, many players don’t recognise the conditions that call for 
conservative initial-cube action, and incorrectly give premature doubles, which 
would otherwise be reasonable if the Jacoby Rule was not in operation. 
 
4. Many players think the Jacoby Rule in general calls for aggressive initial-
cube action.  They may or may not know that the converse is also possible. 
Whichever 
way you look at it, the likelihood is that doubles will often occur sooner than 
might be technically correct. 



 

22 

Appendix 4:  Miscellaneous Equity Tables 

 

Take-point Average cubeless win value  W 

( )x = 2
3  1·00 1·25 1·50 1·75 2·00 

Average 1·00 -0·571 -0·565 -0·559 -0·554 -0·550 

cubeless 1·25 -0·597 -0·588 -0·581 -0·575 -0·570 

loss 1·50 -0·618 -0·608 -0·600 -0·593 -0·587 

value 1·75 -0·635 -0·625 -0·616 -0·609 -0·602 

L 2·00 -0·650 -0·640 -0·630 -0·622 -0·615 
 

Table A1:  Cubeless Take Equities 

( )x = 2
3  

 
 

Beaver-point  Average cubeless win value  W 

( )x = 2
3  1·00 1·25 1·50 1·75 2·00 

Average 1·00 -0·143 -0·129 -0·118 -0·108 -0·100 

cubeless 1·25 -0·161 -0·147 -0·135 -0·125 -0·116 

loss 1·50 -0·176 -0·162 -0·150 -0·140 -0·130 

value 1·75 -0·189 -0·175 -0·163 -0·152 -0·143 

L 2·00 -0·200 -0·186 -0·174 -0·163 -0·154 
 

Table A2:  Cubeless Beaver Equities 

( )x = 2
3  

 
 

Racoon-point Average cubeless win value  W 

( )x = 2
3  1·00 1·25 1·50 1·75 2·00 

Average 1·00 0·143 0·161 0·176 0·189 0·200 

cubeless 1·25 0·129 0·147 0·162 0·175 0·186 

loss 1·50 0·118 0·135 0·150 0·163 0·174 

value 1·75 0·108 0·125 0·140 0·152 0·163 

L 2·00 0·100 0·116 0·130 0·143 0·154 
 

Table A3:  Cubeless Racoon Equities 

( )x = 2
3  
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Init. double, ID  Average cubeless win value  W 

( )x = 2
3  1·00 1·25 1·50 1·75 2·00 

Average 1·00 0·357 0·379 0·397 0·412 0·425 

cubeless 1·25 0·347 0·368 0·385 0·400 0·413 

loss 1·50 0·338 0·358 0·375 0·390 0·402 

value 1·75 0·331 0·350 0·366 0·380 0·393 

L 2·00 0·325 0·343 0·359 0·372 0·385 
 

Table A4:  Cubeless Initial-Double Equities (no Jacoby) 

( )x = 2
3  

 
 

Init. double, ID1 Average cubeless win value  W 

( )x = 2
3  1·00 1·25 1·50 1·75 2·00 

Average 1·00 0·357 0·349 0·343  0·339 0·336 

cubeless 1·25 0·375 0·368 0·363 0·359 0·356 

loss 1·50 0·385 0·379 0·375 0·372 0·369 

value 1·75 0·393 0·388 0·384 0·380 0·378 

L 2·00 0·398 0·393 0·390 0·387 0·385 
 

Table A5:  Cubeless Initial-Double Equities (Jacoby—no beavers) 

( )x = 2
3  

 
 

Init. double, ID2  Average cubeless win value  W 

( )x = 2
3  1·00 1·25 1·50 1·75 2·00 

Average 1·00 0·357 0·365 0·372  0·378 0·383 

cubeless 1·25 0·375 0·368 0·375 0·381 0·386 

loss 1·50 0·385 0·379 0·375 0·381 0·386 

value 1·75 0·393 0·388 0·384 0·380 0·386 

L 2·00 0·398 0·393 0·390 0·387 0·385 
 

Table A6:  Cubeless Initial-Double Equities (Jacoby with beavers) 

( )x = 2
3  
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Redouble Average cubeless win value  W 

( )x = 2
3  1·00 1·25 1·50 1·75 2·00 

Average 1·00 0·429 0·452 0·471 0·486 0·500 

cubeless 1·25 0·419 0·441 0·459 0·475 0·488 

loss 1·50 0·412 0·432 0·450 0·465 0·478 

value 1·75 0·405 0·425 0·442 0·457 0·469 

L 2·00 0·400 0·419 0·435 0·449 0·462 
 

Table A7:  Cubeless Redouble Equities 

( )x = 2
3  

 
 

Cash Average cubeless win value  W 

( )x = 2
3  1·00 1·25 1·50 1·75 2·00 

Average 1·00 0·571 0·597 0·618  0·635 0·650 

cubeless 1·25 0·565 0·588 0·608 0·625 0·640 

loss 1·50 0·559 0·581 0·600 0·616 0·630 

value 1·75 0·554 0·575 0·593 0·609 0·622 

L 2·00 0·550 0·570 0·587 0·602 0·615 
 

Table A8:  Cubeless Cash Equities 

( )x = 2
3  

 
 

Too Good Average cubeless win value  W 

( )x = 2
3  1·00 1·25 1·50 1·75 2·00 

Average 1·00 0·714 0·742 0·765  0·784 0·800 

cubeless 1·25 0·710 0·735 0·757 0·775 0·791 

loss 1·50 0·706 0·730 0·750 0·767 0·783 

value 1·75 0·703 0·725 0·744 0·761 0·776 

L 2·00 0·700 0·721 0·739 0·755 0·769 
 

Table A9:  Cubeless Too Good Equities 

( )x = 2
3  
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Init. double, ID  Average cubeless win value  W 

( )x = 2
3  1·00 1·25 1·50 1·75 2·00 

Average 1·00 0·500 0·500 0·500 0·500 0·500 

cubeless 1·25 0·500 0·500 0·500 0·500 0·500 

loss 1·50 0·500 0·500 0·500 0·500 0·500 

value 1·75 0·500 0·500 0·500 0·500 0·500 

L 2·00 0·500 0·500 0·500 0·500 0·500 
 

Table A10:  Cube-Centred Initial-Double Equities (no Jacoby) 

( )x = 2
3  

 
 

Init. double, ID1 Average cubeless win value  W 

( )x = 2
3  1·00 1·25 1·50 1·75 2·00 

Average 1·00 0·500 0·431 0·378 0·336 0·302 

cubeless 1·25 0·564 0·500 0·449 0·408 0·374 

loss 1·50 0·607 0·548 0·500 0·460 0·427 

value 1·75 0·638 0·583 0·538 0·500 0·467 

L 2·00 0·661 0·611 0·568 0·532 0·500 
 

Table A11:  Cube-Centred Initial-Double Equities (Jacoby—no beavers) 

( )x = 2
3  

 
 

Init. double, ID2  Average cubeless win value  W 

( )x = 2
3  1·00 1·25 1·50 1·75 2·00 

Average 1·00 0·500 0·468 0·443 0·423 0·407 

cubeless 1·25 0·564 0·500 0·476 0·457 0·441 

loss 1·50 0·607 0·548 0·500 0·481 0·465 

value 1·75 0·638 0·583 0·538 0·500 0·484 

L 2·00 0·661 0·611 0·568 0·532 0·500 
 

Table A12:  Cube-Centred Initial-Double Equities (Jacoby with beavers) 

( )x = 2
3  
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Appendix 5:  Derivation of Live-Cube Take Point Formulae 
 
1. Infinite Model — Constant gammon and backgammon-rates 
 
Assumptions: 1. Infinite number of possible subsequent optimal redoubles. 

 2. Owner of cube, when he redoubles, is guaranteed to use it 
  with  perfect efficiency, at which point his opponent will 
  have an optional pass/take. 

 3. Gammon and backgammon rates are constant. 
 
Player A and player B play backgammon for money. Player A's average win value is W, and 
his average loss value is L. If player A owns the cube, the game is effectively played between 
the limits p = 0 (when A loses) and p = CP (when A cashes), where p is player A's cubeless 
winning probability and CP is his cash-point (take-point for player B). If we define q as 
player A's effective winning probability owning the cube, then the following relationships 
can be established:  

When p = 0, q = 0,  and  when p = CP, q = 1. 

As the game is continuous, intermediate values may be found by linear interpolation, as fol-
lows: 

q
p

CP
=                                                                                                        ... (P1) 

Assume player A is doubled from the current stake-level of CV  to the new stake-level of 2CV . 
His take-point, in terms of effective winning probability owning the cube, may be established 
from the risk-reward ratio — he is risking 2C L CV V−  points to gain 2 3C C CV V V+ =  points. 
Although player A stands to lose L points at the new stake if he takes and loses, he only 
stands to win 1 point at the new stake when he takes and wins, because he cashes all the 
games he wins — his W is realised in another way, the ability to cash sooner. The effective 
take-point (TPO ) is given by the following expression: 

( )
( )

( )
( )TP

C L C

C L C C

L
LO

V V

V V V

=
−

− +
=

− ⋅
+

2

2 3

0 5
1

                                                 ... (P2) 

When q TP p TPO= =,  (the take-point in terms of cubeless winning probability). Therefore, 
from equation (P1), 

TP
TP
CPO =                                                                                                    ... (P3) 

By substituting into equation (P2), we derive the following relationship: 

( )
( )

TP
CP

L
L

=
− ⋅

+
0 5
1

                                                                                        ... (P4) 

A similar relationship can be derived from consideration of player B's effective take-point. 
This may be done by making the following substitutions in equation (P4): 

Substitute TP by 1 – CP   (player B's take-point) 
Substitute CP by 1 – TP   (player B's cash-point) 
Substitute  L  by  W  (player B's mean win value) 
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( )
( )

( )
( )∴

−
−

=
− ⋅

+
1
1

0 5
1

CP
TP

W
W

                                                                             ... (P5) 

Solving equations (P4) and (P5) simultaneously, gives us the expression for the live-cube take 
point: 

( )
( )TP

L
L W

=
− ⋅

+ + ⋅
0 5

0 5
                                                                                 ... (P6) 

2. Finite Model — Constant gammon and backgammon-rates 
 
Assumptions: 1. Finite number of possible subsequent optimal redoubles. 

 2. Owner of cube, when he redoubles, is guaranteed to use it 
  with  perfect efficiency, at which point his opponent will 
  have an optional pass/take. 

 3. Gammon and backgammon rates are constant. 
 
Player A and player B play backgammon for money. Player A's average win value is W, and 
his average loss value is L. If player A owns the cube, the game is effectively played between 
the limits p = 0 (when A loses) and p = CP (when A cashes), where p is player A's cubeless 
winning probability and CP is his cash-point (take-point for player B). If we define q as 
player A's effective winning probability owning the cube, then the following relationships 
can be established:  

When p = 0, q = 0,  and  when p = CP, q = 1. 

As the game is continuous, intermediate values may be found by linear interpolation, as fol-
lows: 

q
p

CP
=                                                                                                        ... (P1) 

Assume player A is doubled from the current stake-level of CV  to the new stake-level of 
2CV .  
His take-point, in terms of effective winning probability owning the cube, may be established 
from the risk-reward ratio — he is risking 2C L CV V−  points to gain 2 3C C CV V V+ =  points. 
Although player A stands to lose L points at the new stake if he takes and loses, he only 
stands to win 1 point at the new stake when he takes and wins, because he cashes all the 
games he wins — his W is realised in another way, the ability to cash sooner. The effective 
take-point (TPO ) is given by the following expression: 

( )
( )

( )
( )TP

C L C

C L C C

L
LO

V V

V V V

=
−

− +
=

− ⋅
+

2

2 3

0 5
1

                                                 ... (P2) 

When q TP p TPO= =,  (the take-point in terms of cubeless winning probability). Therefore, 
from equations (P1) and (P2), 

( )
( )TP CP TP CP
L

LO= × =
− ⋅

+
0 5
1

                                                             ... (P7) 
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Consider the single subseqent optimal redouble model — when player A redoubles, he will be 
handing over a dead cube. Consequently, player A's cash-point is his dead cube cash-point, 
given by the following expression: 

( )
( )CP
L
W L

=
+ ⋅
+
0 5

                                                                                        ... (P8) 

Substituting into equation (P7): 

( )( )
( )( )TP

L L
W L L1

0 5 0 5
1

=
+ ⋅ − ⋅

+ +
                                                                        ... (P9) 

For other live-cube models, take-points can be derived from the following infinite series: 

TP tp tp tp tp tp tp tp= − − − − − − −1 2 3 4 5 6 71 1 1 1 1 1 1( ( ( ( ( ( ( ......                ... (P10) 

where the tp-terms are the successive effective take-points for player A and player B respec-
tively. If we wish to establish the take-point, in terms of cubeless winning chances for player 
A, then all odd-numbered tp-terms represent his effective take-points, and all even-numbered 
tp-terms represent player B's effective take points. The number of terms used, counting from 
the left, should be equal to the number of possible subsequent optimal redoubles plus one. 
The final term should be the dead-cube take-point for whichever side takes last. 

For odd-numbered-terms, 
( )

( )tp
L

Ln =
− ⋅

+
0 5
1

 or 
( )
( )tp
L
W Ln =

− ⋅
+
0 5

 for the final-term. 

For even-numbered-terms, 
( )

( )tp
W

Wn =
− ⋅

+
0 5
1

 or 
( )
( )tp
W
W Ln =

− ⋅
+
0 5

 for the final-term. 

Considering, the infinite live-cube model, the take-point can be established by calculating the 
sum of this infinite series. By manipulation of equation (P10), the following relation may be 
derived: 

1
1

1

2

−
−









=

TP
tp

tp
TP   which after after substitution of the relevent tp-terms, simplifies to: 

( )
( )TP

L
L W

=
− ⋅

+ + ⋅
0 5

0 5
                                                                                 ... (P6) 

3. Finite Model — Varying gammon and backgammon-rates 
 
Assumptions: 1. Finite number of possible subsequent optimal redoubles. 

 2. Owner of cube, when he redoubles, is guaranteed to use it 
  with  perfect efficiency, at which point his opponent will 
  have an optional pass/take. 

3.  Gammon and backgammon rates vary, but their rate of 
  change is constant. 
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Player A and player B play backgammon for money. The win and loss values are not constant 
throughout the life of the game, but the rate of change of these values is — measured by 
change in win value per redouble, i.e., every time a redouble occurs, the win rate of the 
person doubled reduces or increases by constant factor. Consequently, it is no longer enough 
to specify only average win values (W and L). The additional parameters required for our 
analysis we define as follows: 

 y = change in win (or loss) value per redouble 
 w = initial average win value (immediately after the current cube action) 
 l = initial average win value (immediately after the current cube action) 

Take-points can be derived from the following infinite series: 

TP tp tp tp tp tp tp tp= − − − − − − −1 2 3 4 5 6 71 1 1 1 1 1 1( ( ( ( ( ( ( ......                ... (P10) 

where the tp-terms are the successive effective take-points for player A and player B respec-
tively. If we wish to establish the take-point, in terms of cubeless winning chances for player 
A, then all odd-numbered tp-terms represent his effective take-points, and all even-numbered 
tp-terms represent player B's effective take points. The number of terms used, counting from 
the left, should be equal to the number of possible subsequent optimal redoubles plus one. 
The final term should be the dead-cube take-point for whichever side takes last. 

For odd-numbered-terms, 
( )( )

( )( )tp
l y

l yn

n

n=
⋅ + −

+ −

−

−

0 5 1

2 1

1

1  or 

  
( )( )

( ) ( )( )tp
l y

l y w yn

n

n n=
⋅ + −

+ − + −

−

− −

0 5 1

2 1 1

1

1 2  for the final-term. 

For even-numbered-terms, 
( )( )

( )( )tp
w y

w yn

n

n=
⋅ + −

+ −

−

−

0 5 1

2 1

1

1  or 

  
( )( )

( ) ( )( )tp
w y

w y l yn

n

n n=
⋅ + −

+ − + −

−

− −

0 5 1

2 1 1

1

1 2  for the final-term. 

Curiously, numerous trials with different y-rates, indicate that the rate of change in win values 
does not effect the take point, if average win and loss values are considered, i.e., 

( )
( )TP

L
L W

=
− ⋅

+ + ⋅
0 5

0 5
                                                                                 ... (P6) 

A full proof of this phenomenon has not been made. 
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Appendix 6:  Letters to Danny Kleinman 
 
5th December 1993 
 
Dear Danny, 
 

Re: Take-points in Money Games 
 
Thanks for your letters of November 8 and 19 regarding the article I sent you. You 
have raised some helpful and interesting points which I will attempt to address. 
 
 
A Simpler Dead-Cube Model 

I agree that, as regards the dead-cube model, we can deal with one variable, the 
gammon-adjusted winning probability (R), instead of two variables representing 
average sizes of wins and losses (W and L). However, it doesn't necessarily follow that 
this method is valid for all degrees of cube-life. Essentially, what we have calculated 
is the equivalent cubeless winning probability for a gammonless game which will 
result in the same cubeless equity —  it would be nice if this was the same equivalent 
gammonless probability for different positions of the cube, but it might not be. When I 
began this work, I had hoped to find that this was indeed the case, but now I'm almost 
certain that it isn't — however, the assumption yields fairly reasonable estimates of 
equity. Assuming for the moment that my dead-cube and live-cube formulae are 
correct, we can define separate gammon-adjusted winning probabilities in terms of W 
and L, as follows: 

1. Dead-Cube 

Let p be the cubeless winning probability, Rdead  be the gammon-adjusted winning 
probability, and EO  be the cube-owned equity (same here for any position of the cube, 
or cubeless), then, 

( )E p W L L RO dead= + − = −2 1  

( ) ( )
∴ =

+
+

−
R p

W L L
dead 2

1
2

                                                            ..(A1) 

2. Live-Cube 

Let p be the cubeless winning probability, Rlive  be the cubeless gammon-adjusted 
winning probability, and EO  be the cube-owned equity, then, 

( )E p W L L RO live= + + ⋅ − = ⋅ −0 5 2 5 1  

( ) ( )
∴ =

+ + ⋅
⋅

+
−
⋅

R p
W L L

live

0 5
2 5

1
2 5

                                                  ...(A2) 

By substitution from equation (A1), 

 R R plive dead= ⋅ + ⋅0 8 0 2                                                                      ...(A3) 
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Inspection shows that the dead-cube and live-cube gammon-adjusted winning prob-
abilities are only equal to one another in gammonless games. 

Another way of looking at this phenomenon is to inspect the take-point formulae for 
dead-cube, live-cube, and the gammon-adjusted live approximation (gala), again in 
terms of W and L: 
 

( )
( )TP
L
W Ldead =

− ⋅
+
0 5

    
( )

( )TP
L

W Llive =
− ⋅

+ + ⋅
0 5

0 5
    

( )
( )TP
L
W Lgala =

− ⋅
+
0 6

 

I have derived the TPgala  formula to yield the same answers as the gammon-adjusted 
winning probability method. Note again that the live-cube take points only coincide in 
gammonless games (TP = 0.2). 
 
I have assumed, from the contents of your letter, that you accept that my live-cube 
take point formula is correct. This assumption is of course crucial to the above 
argument. Please tell me if you require any further proof (the one in the article is only 
approximate). 
 
Correction to Table 1c 

Well spotted. I must have read over this section numerous times without noticing what 
now appears an obvious error. I think you have made a similar error, as the first term 
in your corrected sequence should be 35.3%.  
 
Cubeless Take-Equity Tables 

The cubeless equity, for a given position, I would define as the average expected rate 
of profit (ppg), when the remainder of the game is played out cubeless, at the stake of 
1 point, with both gammons and backgammons counting. The cubeless take-equity 
(cte) is the underdog's cubeless equity at the point where he/she has an optional 
pass/take. Considering the straightforward case when neither player has any gammon 
expectation: 

 Where the cube is dead,  cte = 0.75 - 0.25 = 0.5 ppg. 

 Where the cube is live,  cte = 0.80 - 0.20 = 0.6 ppg. 

The above two values represent the limits of the take-equity envelope for gammonless 
games. 

For games where there is some gammon expectation, the cubeless equity for any posi-
tion may be defined as follows: 

( ) ( )E pW p L p W L LCubeless = − − = + −1  

where,  p is the cubeless winning probability, W is the average value of those games 
ultimately won, and L is the average value of those games ultimately lost. Assuming 
the cubeless take-point (TP) is known, then, 

( )p TP E TP W L Ltake= ∴ = + −,      i.e., equation (4) in the article. 
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Turn-Points in Gammonless Games 

Again, well spotted. The final sentence of my Other Cube Action Decisions section 
should read "Maximum divergence occurs when x is about 0.57, and typically ranges 
between 2.00% (W = 2, L = 2) and 3.75% (W = 1, L = 1)." — a typographical error. 
Interestingly, when gammon-rates are 100% for both sides, maximum divergence 
occurs when x is about 0.58, about 0.02 more than in the gammonless situation you 
accurately calculated. Consequently, I have used 0.57 as an average value over the 
whole range of gammon-rates. 
 
Other Formulae 
 
These were derived from the equity formulae (equations 5-7), and a Jacoby effects ad-
justment method discussed later. The cube-owned and cube-unavailable equity formu-
lae can be readily established from the take point formula. The cube-centred equity 
formula is derived from the assumption that the game is effectively played between the 
players' respective effective cash-points (curiously these are the too-good points — 
cube-owned equity = the value of the cube before doubling). 
 
Use of Variables and Formulae 

I agree with the points you raise regarding how backgammon players think. However, 
if the formulae were to use more conventional variables, they would be unwieldy and 
over-complex in all but the simpler dead case, (where they aren't really needed 
anyway). Perhaps it would have been better to have constructed the take-point and 
take-equity tables using gammon-rates instead of W and L, but they then wouldn't 
have dealt with backgammons. Trying to develop similar cube-formulae using only 
conventional variables is extremely difficult. I adopted this approach some two years 
ago, without any useful result — just waste-paper, dead brain-cells, and a feeling of 
intellectual impotence. When it occurred to me to use average win and loss values 
instead, I was delighted to find the formulae penetrating themselves out of the fog of 
my ignorance — they were more discovered than invented. 

The formulae modelling Jacoby effects I am much less comfortable with myself. 
Essentially, what I have done is to define what happens at the extremes of cube-life in 
terms of k, a contrived (rather than discovered) no-Jacoby initial double-point 
multiplier — we know what happens when the cube is dead (Kauder's and Latto's 
paradoxes) and live (no effect whatsoever). In between, with current understanding, 
lies that fog I mentioned before. I have used the simplest algorithm, which satisfies the 
known criteria at the extremes, to chart a path through what I believe is now a light 
mist — approximating to roughly linear interpolation. Even if the relationship is non-
linear, i.e., curved, in what direction should it curve and what should its curvature be 
— I don't know, does anybody? Other methods and approaches are equally valid, but I 
doubt significantly more accurate. I think a formula has no business being refined and 
over-complicated without just and proven cause. 
 
I hope I have managed to clarify some of my thinking on the interesting points you 
raised in your letters. It goes without saying that I would be pleased if you have any 
further feedback. I was especially pleased to receive your speedy and detailed 
response, and your valuable proof reading for that matter. I take the opportunity to 
enclose another article I've written, this time on the use of statistical theory to quantify 



 

33 

the significance of rollout results. Again any feedback would be much appreciated. 
Best wishes for Christmas and the New Year — this is an unnecessary restriction, 
simply best wishes is more appropriate. 
 
Yours sincerely, 
 
Rick Janowski 
 
 
3rd January 1994 
 
Dear Danny, 
 
Thanks for your letter of 22nd December — I was pleased to find that it wasn't hand-
written. I include an additional appendix to my article on money-game take points, 
which shows how the take point formulae were derived. I was pleased that you 
enjoyed my article on rollout statistics, but tell me, do you agree with my comments 
about how appropriate the random analysis is to backgammon simulations (pages 4 
and 11 of the article)? Please pass on my thanks to Nicole for her greetings and 
uncancelled stamps. 
 
Yours sincerely, 
 
Rick Janowski 
 
 
8th January 1994 
 
Dear Danny, 
 
Thanks for your recent letter (postmark 28th December). I like your article, and would 
agree that it is easier reading than my own, whilst still conveying the most salient 
points, along with your own special insights. I noticed two minor typographical errors, 
which you may have spotted already: 
 
 1. The Janowski Formula —  Paragraph beginning “ The following example 
  (position omitted) ...”, 2nd sentence: "Likkewise"  
 
 2. The Janowski Factor —  Final paragraph, 4th sentence: “posit" — I don't 
  know what should be written, but I know what you mean.  
 
I also have some observations: 
 
Typical J-Values 

I agree that, as regards take-points, my typical J-value of 0.67 is a little high, and 
consider a value of about 0.60 more appropriate — similar to your estimate of 4/7. As 
regards doubling points, however, the value of 0.67 is, I believe a good estimate — 
the cube-owner is closer to his target so he is less likely to miss by much. As you 
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rightly point out, the take-point is relatively insensitive to the J-Factor assumed. This 
is not the case with doubling-points, which are far more sensitive. Hence, I decided to 
use 0.67 as the best compromise value, as by this means no substantial errors should 
occur  — an intuitive least squares solution if you would. These considerations don't 
apply of course when the Refined General Model is considered (Appendix 2) — I 
would estimate typical values of 0.75 and 0.60, for J1 and J2 respectively. 
 
Application of Doubling Formulae 

I agree that considerations of average volatility are more appropriate to take-points 
than doubling points — the long-term volatility of the former cannot easily be 
assessed, whereas the short-term volatility of the latter can be. Moreover, the different 
degrees of sensitivity, mentioned previously, are relevant. Assessing double/no double 
decisions in such a general manner is not entirely useless — you have a ballpark 
figure to work with which should not normally result in significant errors. 
Furthermore, doubling errors are far smaller than take/pass errors in terms of 
probability difference from the relevant threshold. The liveness of the cube that you 
contemplate when turning the cube is just as average when in a take situation — 
granted, in the former the liveness has a more solid shape, in comparison to the 
haziness of the latter, but mean or average values are unaffected by the degree of 
understanding of the likely scenarios — average does not mean unclear. Having said 
all that, I believe that, where possible, it is advisable to estimate the volatility of the 
position, before applying the doubling formulae. It might be said that this is a waste of 
time, as you might as well do a detailed calculation, having regard to specific market-
losers. However, it is possible to make reasonable estimates of volatility over the 
board, from experience, knowledge from reference positions, simplified calculations, 
or plain instinct. Such a reasonable estimate of volatility, combined with rollout or 
estimated results, would enable the formulae to provide sound advise on cube-action 
(particularly so using the Refined General Model). Similarly, computers are able to 
estimate volatility (or soon will be) — they can look at the resultant estimated equity 
swings on the 1296 combinations, providing a fairly accurate value of volatility, even 
if its equity estimates are less than reasonable. Long-term volatility is more difficult to 
assess accurately — rollouts are probably necessary, until enough reference positions 
are known so that family characteristics are recognisable. With regard to races, I 
enclose an additional appendix to my article, containing some examples which you 
might find interesting. 
 
In closing, I would like to say that I thoroughly enjoyed your article — I particularly 
like your concept of the J-Factor being an increment of an average win. I had formu-
lated a similar idea, but didn't explain it nearly so well — if I did at all. I feel both 
proud and a little embarrassed at the praise you poor upon me. We British are so 
modest — but what is modesty if not humility without sincerity? Enough introspective 
nonsense. Again, it goes without saying that I would appreciate any comments you 
might have. By the way, are you planning to publish a new book soon? That would be 
something to look forward to. 
 
Yours sincerely, 
 
Rick Janowski 
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Appendix 7:  Examples — Refined General Model 
 
1. Simple Race Positions 
 
In the following three examples, cube-life indices, x1 and x2,are calculated from known 
position equities (from Walter Trice's Quizmaster). The accuracy of the model is then 
investigated by comparing the calculated centred-cube equity with the actual centred-cube-
equity. 
 
Example 7-1a 
 

Black on roll
12 11 10 9 8 7 6 5 4 3 2 1

13 14 15 16 17 18 19 20 21 22 23 24

 
 
From equation (8): 
 

x
p

E
C

L W LO

V
1 2

1
2

1
0 778993

1633871
2

1 1 1 0 664831= +








 − −









 = +





 − −









 =

.
.

.  

 
From equation (9): 
 

( ) ( )x
p

W
E
C

W LO

V
2 2

1
1

2
1

1 0 778993
1

1042959
2

1 1 0 330365=
−

−








 − −













=
−

−




 − −









 =

.
.

.

 
From equation (10): 
 

Q
W L x
W L xx =

+ +
+ +









 =

+ + ×
+ + ×





 =

0 5
05

1 1 05 0 330365
1 1 0 5 0 664831

0 9283012

1

.

.
. .
. .

.  

and  
 

( ) ( ) ( )[ ]
( ) ( )[ ]EC =

× × + + × − + − + × −
+ − + × −

=
1 2 0 778993 1 1 05 0 330365 0 928301 1 1 1 05 0 330365 1

0 928301 1 1 1 0 5 0 330365 1
0 799056

. . . . . .
. . .

.

 
Alternatively, from equation (11), a more approximate value can be established as follows: 
 

( )
( )[ ]EC ≈ × ×

× × + × ×
+ − × ×

=4 1
0 664831 1633871 05 0 330365 1042959 05

4 0 664831 0 330365 2 0 664831 0 330365
0808020

. . . . . .
. . . .

.  

 
Both the calculated values compare favourably with the true value of 0.797339. 

Position: 001221-000132 cwp = 0.778993 

Cube Position Equity 

Black owns 2-cube +1.633871 

White owns 2-cube +1.042959 

Centred-cube +0.797339 
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Example 7-1b 
 

Black on roll
12 11 10 9 8 7 6 5 4 3 2 1

13 14 15 16 17 18 19 20 21 22 23 24

 
 
From equation (8): 
 

x
p

E
C

L W LO

V
1 2

1
2

1
0 492070

0 218114
2

1 1 1 0507720= +








 − −









 = +





 − −









 =

.
.

.  

 
From equation (9): 
 

( ) ( )x
p

W
E
C

W LO

V
2 2

1
1

2
1

1 0 492070
1

0 337572
2

1 1 0 602154=
−

−








 − −













=
−

+




 − −









 =

.
.

.

 
 
From equation (10): 
 

Q
W L x
W L xx =

+ +
+ +









 =

+ + ×
+ + ×





 =

0 5
05

1 1 0 5 0 602154
1 1 05 0 507720

10209492

1

.

.
. .
. .

.  

 
and  
 

( ) ( ) ( )[ ]
( ) ( )[ ]EC =

× × + + × − + − + × −
+ − + × −

= −
1 2 0 492070 1 1 05 0 602154 1020949 1 1 1 05 0 602154 1

1020949 1 1 1 0 5 0 602154 1
0 045032

. . . . . .
. . .

.

 
Alternatively, from equation (11), a more approximate value can be established as follows: 
 

( )
( )[ ]EC ≈ × ×

× × − × ×
+ − × ×

= −4 1
0507720 0 218114 05 0 602154 0 337572 0 5

4 0 507720 0 602154 2 0507220 0 602154
0 048335

. . . . . .
. . . .

.  

 
Both the calculated values compare favourably with the true value of -0.048802. 
 
 
 
 
 
 
 

Position: 001221-012210 cwp = 0.492070 

Cube Position Equity 

Black owns 2-cube +0.218114 

White owns 2-cube -0.337572 

Centred-cube -0.048802 



 

37 

 
Example 7-1c 
 

Black on roll
12 11 10 9 8 7 6 5 4 3 2 1

13 14 15 16 17 18 19 20 21 22 23 24

 
 
From equation (8): 
 

x
p

E
C

L W LO

V
1 2

1
2

1
0 236591

0 989290
2

1 1 1 0 271971= +








 − −









 =

−
+





 − −









 =

.
.

.  

 
From equation (9): 
 

( ) ( )x
p

W
E
C

W LO

V
2 2

1
1

2
1

1 0 236591
1

1673142
2

1 1 0811501=
−

−








 − −













=
−

+




 − −









 =

.
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From equation (10): 
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and  
 

( ) ( ) ( )[ ]
( ) ( )[ ]EC =

× × + + × − + − + × −
+ − + × −

= −
1 2 0 236591 1 1 0 5 0811501 1126295 1 1 1 05 0811501 1

1126295 1 1 1 05 0811501 1
0823018

. . . . . .
. . .

.

 
Alternatively, from equation (11), a more approximate value can be established as follows: 
 

( )
( )[ ]EC ≈ × ×

− × × − × ×
+ − × ×

= −4 1
0 271971 0 989290 05 0 811501 1673142 0 5
4 0 271971 0811501 2 0 271971 0 811501

0 835876
. . . . . .

. . . .
.  

 
Both the calculated values compare favourably with the true value of -0.820455. 
 
 
 
 
 
 

Position: 001221-001201 cwp = 0.236591 

Cube Position Equity 

Black owns 2-cube -0.989290 

White owns 2-cube -1.673142 

Centred-cube -0.820455 
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Summary and Discussion 
 
Both equations (10) and (11) give good estimates of the cube-centred equity — the former 
particularly so, as can be seen from the summary of results tabulated below: 
 
 

Example 7.1a 7.1b 7.2c 

cwp  0.778993  0.492070  0.236591 

x1  0.664831  0.507720  0.271971 

x2  0.330365  0.602154  0.811501 

x1 + x2  0.995196  1.109874  1.083472 

EC actual +0.797339 -0.048802 -0.820455 

EC equation (10) +0.799056 -0.045032 -0.823018 

EC equation (11) +0.808020 -0.048335 -0.835876 

 
 
Notice that although the individual values for x1 and x2 vary from example to example, the 
sum of x1 and x2 is fairly consistent. This suggests that both players have a shared pool of 
cube-life to draw upon — the player with the better probability takes the greater share as he 
is nearer to his doubling target. It would therefore appear possible to construct an algorithm 
for assessing the shared cube-life pool, from various pertinent factors — length of race and 
its standard deviation, and average bearoff wastage being the most critical. The distribution 
of this pool could then be assigned by another algorithm from the above mentioned factors 
and the cubeless probability. There are four extreme bearoff wastage conditions, which are, 
fortunately, readily calculable: 
 
 1.  single checker versus single checker 

 2.  no-miss position versus no-miss position 

 3.  single checker versus no-miss position 

 4.  no-miss position versus single checker 
 
These four extreme conditions can be imagined as a rectangular envelope, encompassing all 
other intermediate conditions, whose relevant cube coefficients can be interpolated by some 
means. One factor the above method of analysis would not allow for is any special conditions 
which effect cube usage, e.g. a heavy 2-point in the final stages of a race tends to generate 
effective doubling positions, whilst a heavy ace-point does not. Such phenomenon are not so 
common in races longer than about 20 pips, but the overall effect would need to be investi-
gated. Interestingly, if this method proves valid to money games, it could quite easily be 
extended to matches. This would give valuable information on how normal cube actions are 
modified at certain match scores and cube-levels. Moreover, a general knowledge of cube-
potency at specific match scores would improve our understanding of match equities. 
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