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ABSTRACT 

Like many games, people place money wagers on backgammon games. These wagers can 
change during the game. In order to make intelligent bets, one needs to know the chances of 
winning at any point in the game. We were working on this for positions near the end of the 
game when we needed to explicitly label each of the positions so the computer could refer to 
them. The labeling developed here uses the least possible amount of computer memory, is 
reasonably fast, and works well with a technique known as dynamic programming. 

INTRODUCTION 

The Game of Backgammon 

Backgammon is played on a board with 15 checkers per player, and 24 points (orga

nized into four tables of six points each) that checkers may rest on. Players take turns 

rolling the two dice to move checkers toward their respective "home boards," and ulti

mately off the board. T h e first player to move all of his checkers off the board wins. 

We were concerned with the very end of the game, when each of the 15 checkers is 

either on one of the six points in the home board, or off the board. This is known as the 

"bearoff," since checkers are borne off the board at each turn. Some sample bearoff posi

tions are shown in Figure 1. 

We wanted to calculate the chances of winning for any arrangement of positions in 

the bearoff. To do this, we needed to have a computer play backgammon against itself, 

to keep track of which side won more often. As part of its strategy, the computer needed 

to know how many turns it would take to bear off completely from any bearoff position. 

Thus , we need to know how many bearoff positions there are, and we need a good way 

of referring to them (a "hash" function). 

Figure 1. Sample bearoff positions. Left: 3 checkers off the board. Right: 4 checkers 
off the board. 
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The Problem At Hand 

We want a way to look at a backgammon position and give it a unique and easy-to-

compute number that specifies the position. The most obvious way to refer to positions 

would have used impractical amounts of memory (almost five thousand times as much 

as necessary). It was like writing a dictionary with entries for "aaaaa" through "zzzzz", 

with most of the entries blank. Instead, we found a way to give each position a number, 

such that there are no gaps between positions (no blank entries in the dictionary). Com

puter scientists refer to this as a "hash" function. Moreover, the function is easy to com

pute in either direction. It is as if we can look at any word and know which page in the 

dictionary it appears on, and we can tell which word appears on a page without looking 

it up. This ability is due to the special structure of backgammon. 

SOME SIMPLE COMBINATORICS 

In order to develop our enumeration scheme, we need some simple formulas from 

combinatorics (the study of ways to combine things). The first is the factorial function, 

denoted with an exclamation mark (!). This denotes the number of ways of ordering 

some number of objects. The number of ways to put four books onto a bookshelf is 

denoted 4 ! . These numbers are easily calculated: n\ = n - (n— I) - (n — 2)---2 • 1 . 

So, l ! = 1 , 2! = 2 , 3! = 6 , 4! = 24 , 5! = 120, and so forth. 

We can use the factorial function to answer more complicated questions. How 

many ways are there of choosing 4 books out of 6, and putting them on a shelf? The 

answer is 6 ! / (6 — 4 ) ! , or 360. This is only the case if we must decide on the order of 

the 4 books, though. If the final order doesnt matter, our value of 360 is too large: the 

selection ABCD gets counted as different from DCBA, even though the same books 

were chosen. In fact, each selection is counted 4! times. So, to get the number of ways 

to chose 4 books from 6 (denoted , , pronounced "six choose four" or "choose four 

from six"), we take 

& = 1 5 
( 6 - 4 ) ! 4 ! 

And, in general, 

Kk) (n-k)lkl 

When we are using the "choose" function, we are not allowed to take more than 
one of each item. We can't take the same book twice, for example. If we relax this 
restriction, we end up with more possibilities. How many possible four-scoop ice 
cream cones are there when we have six flavors to choose from? Now we could get four 

of the same flavor, or two of two flavors, and so forth. This problem is denoted , , 
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and pronounced "six multichoose four". It is possible to show that 

ri\ (n + k-
k) { k 

This means that there are II , II = 1,1 = 126 ways to order a four-scooper when 

presented with six flavors. This is substantially more than the number of choices we 
had if we could not duplicate flavors. 

It is also possible to show that , has another interpretation: it is the number of 

ways to distribute k identical objects to n distinct recipients. One can think of this as 
distributing four votes to the six ice cream flavors. One could get all of the votes, or 
four of them could get one vote each, and so forth. It is this last interpretation that will 
be useful in enumerating backgammon positions. 

HOW MANY BEAROFF POSITIONS ARE THERE? 

There are at most 15 checkers to distribute among 6 points. We say "at most" 

because some of the checkers might have been borne off the board already. If Ki 

denotes the number of checkers on the z'-th point, then it must be the case that 

K1 + K2 + ... + K6 < 15 . If we add a "dummy" point, point 0, that counts the num

ber of checkers off the board, we have K0 + Kx + ... + K6= 15 . The number of ways 

to do this, as discussed above, is , , with n — 1 points and £ = 1 5 identical 

checkers. So, there are - 11= 54264 possible bearoff positions. 

STORING BEAROFF POSITIONS 

Each one of these 54264 positions may be represented as a length seven vector of 
integers, each one between zero and fifteen (inclusive). If we wanted to store some infor
mation for each position, and declared a 7-dimensional array on the computer, it would 
require at least 16 > 268 Megabytes of RAM, an impractical amount on almost any 
computer. A better method of storage is needed. 

One reason for the large amount of RAM is the sparseness of the array. The posi

tions are constrained to have the sum of their elements equal 15; that is, if A" is a 
6 

bearoff position vector, ^T Ki = 15 . Thus, vectors such as (0, 0, 0, 0, 0, 0, 0) and 
i = 0 

(15, 15, 15, 15, 15, 15, 15) are illegal. To guarantee 15 checkers, we can change the 
vector representation to a length 15 list representation of each checker's position. 
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Thus, the position "all checkers off the board" is expressible as (15, 0, 0, 0, 0, 0, 0) or 

000000000000000, and "all checkers on the six-point" is (0, 0, 0, 0, 0, 0, 15) or 

666666666666666. Since all checkers are identical, some positions have many repre

sentations in this form. To stop this duplication, we restrict the list to be nondecreasing 

from left to right. We then sort the lists lexicographically, as in Table 1. 

Vector 

(15,00,00,00,00,00,00) 

(14,01,00,00,00,00,00) 

(14,00,00,00,00,00,01) 

(13,02,00,00,00,00,00) 

(13,01,01,00,00,00,00) 

(13,01,00,00,00,00,01) 

(12,03,00,00,00,00,00) 

(04,03,03,02,00,02,01) 

(00,00,00,00,00,00,15) 

List 

000000000000000 

000000000000001 

000000000000006 

000000000000011 

000000000000012 

000000000000016 

000000000000111 

000011122233556 

666666666666666 

Integer 

0 

1 

6 

7 

8 

12 

13 

8887 

54263 1 

Table 1 : Lexicographical Ordering of Bearoff Positions 

Since the positions are now ordered and enumerated, it would be useful to have a 
function that returned the number of a position given to it. This could be accomplished 
by a linear search through a lookup table, as above, but that would be relatively slow. 
Fortunately, there is a faster way. 

Consider the position E = (4, 3, 3, 2, 0, 2, 1) , shown in Figure 2. We wish to 

calculate its integer representation. This will be done by counting the positions that 

come before E. Since E has 4 checkers on the 0-point, it must come after every posi

tion that has more than 4 checkers there. The number of such positions is ; of 

the 15 checkers, we put 5 on the 0-point, then distribute the remaining 10 checkers 
among the 7 points. 
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• A 

Point #: 0 

# Checkers: 4 

Figure 2. Position 8887 

As E is after every position with more than 4 checkers on the 0-point, it is also 

after every position with exactly 4 checkers on the 0-point and more than 3 on the 1 -

point. If we put 4 on the 0-point and 4 on the 1-point, we have 7 = 15 — (4 + 3 + 1 ) 

checkers to distribute among the six points 1... 6 , or possible positions. Remem

ber, these positions have exactly 4 checkers on the 0-point, so they come between the 

previous "four or more" and position E. We therefore add them, and their sum is still 

less than the integer representation of E. 

For the third point, we may calculate that there are exactly , positions with 4 

the 0-point, 3 on the 1-point, and more than 3 on the 2-point. 
Continuing this reasoning gives the sum 

on 

••mo-M-"" 
So 8887 is the integer representation of E. Notice that the top component decreases 

by one each term, and the bottom component decreases by the number of checkers on 

that point. This leads to a general formula for the integer representation of vector K. 

Define S;- as the number of possible positions that match exactly all the points before 
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/', and have more checkers on the /-th point than the current position does. Thus, to 

calculate S; for position K, one uses the formula 

S' = l[l5-(A'1 + .../+Ar,.+ l)jJ 

5 

The integer representation of K is then the sum of the S{ terms: ^T S{ . This gives 
; = 0 

an algorithm to compute position number that runs rather quickly. 

PROPERTIES OF THE ENUMERATION 

Because each position's number is determined only by the number of positions that 
come before it, there can be no gaps in the list. So, each one of the 54264 positions has 
a number somewhere between 0 and 54263. This means that no memory is wasted on 
impossible positions. 

There is a quick algorithm to convert an integer back into a position, by succes
sively subtracting various values to find how many checkers are on point 6, then point 
5, and so forth. This means that we can go from positions to integers and back again 
without using a large lookup table. 

We mentioned before that we wanted to store information about each position. 
This enumeration gives us the ability to have an array of 54264 entries, each of which 
says something about its respective position. For example, one simple measurement of 
a position is its "Raw Pip Count", or RPC. This is just the sum of the distances that the 
checkers must travel to get off the board. For Figure 2, this is 
6 + 2 - 5 + 2 - 3 + 3 - 2 + 3 - 1 = 3 1 . If we plot the RPC of each position versus its 
integer representation, we get Figure 3. This shows something of the structure of this 
enumeration: the positions that are close to being done (low RPC's) have low hash val
ues, and those that are far from finishing (high RPC's) have large hash values. However, 
there is no simple function we could apply to approximate the RPC of a position given 
its hash value. 
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Integer Representation of Position 

Figure 3. The raw pip counts of all bearoff positions 

We wanted to keep track of how good each position is. This depends on the way 
the dice roll, in addition to the arrangement of the checkers. We call the value of each 
position its "Expected Pip Count", or EPC. These are shown in Figure 4. Again, the 
structure of the enumeration appears in the graph. Also, there is a general correspon
dence between EPC and hash value, but there is no simple function to go between the 
two. The EPC translates directly to the expected number of turns until the player is fin
ished. To get the expected number of turns, one divides the EPC of the position by 
4 9 / 6 « 8.16667 , which is the average value of a dice roll.1 

Integer Representation of Position 

Figure 4. The expected pip counts of all bearoff positions 

1. Backgammon rules give twice as much weight to rolling doubles, which is why the 
average is higher than the usual 7. 
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The EPC for any position P is calculated by looking at the EPC for all positions 
which can be reached from P by legal moves. This is where the enumeration shines: if 
position P has integer representation A , then any legal move produces an integer rep
resentation less than A . We can easily compute by hand the EPC's for six simple posi
tions that are very near the end of the game. Then, we march up the integers, generating 
rolls and moves for each position and storing the EPC's as we calculate them. Conve
niently each legal move from the current position produces a position with a smaller 
integer representation, so we've already computed the EPC for it. Therefore, we don't 
have to call the EPC-calculating program recursively, since we are being smart about the 
order in which we calculate positions. This sort of technique is known as dynamic pro
gramming. It is very efficient and useful in all sorts of problems, from deciding which 
items to take on a trip (the Knapsack problem) to determining the life cycles of lizards. 
For an example of dynamic programming in biology, see "Dynamic Models of Behav
ior: An Extension of Life History Theory" by Colin W. Clark.1 

CONCLUSIONS 

Once the EPC for each of the bearoff positions has been calculated, the computer 
can play perfect backgammon in the bearoff. Given its current position and a dice roll, 
it can look at each of the positions it can move to, and choose the one with the smallest 
EPC. This means it minimizes the number of turns it expects to make before it finishes. 
It needs the hash developed here to make a compact lookup table so it can play optimal 
backgammon. Then, it can compute the chances of winning by playing against itself 
many times and keeping track of which side wins. Once the computer has calculated 
these winning chances, it is possible to create formulas for them which can be calculated 
in one's head while playing backgammon. Thus, one might not play the game any bet
ter (unless one can memorize a table of 54264 numbers), but one knows more about 
how to bet on it. 

1. "Dynamic Models of Behavior: An Extension of Life History Theory" by Colin W. 
Clark is in Trends in Ecology and Evolution, volume 8, number 6, June 1993, 
pages 205-209. 
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